Abstract
Wind energy conversion systems employ the doubly fed induction generator (DFIG) for maximum energy capture. Many traditional systems used pulse width modulation (PWM) technique to control the DFIG block by a feedback from the load terminal. PWM schemes generate the control pulses for an inverter switches. An independent activation of the wind turbine generator does not offer optimum result. This paper presents the fuzzy-based PWM controlling of wind turbine system in DFIG to provide an optimum result. According to the torque level and the rotation speed of wind turbine, the speed of the generator is controlled to maintain voltage regulation at load side. The integration of ABC-direct quadrature transformation based on the fuzzy rule generates the necessary control signals for gates. To control the operation of multilevel converters, an enhanced phase differential space vector PWM modulation (EPD-SVPWM) is implemented in this paper. The transfer function for maintenance of the reduced level of ripples in inverter switching circuit included in the modification of SVPWM lead to high-speed switching of the insulated gate bipolar transistor (IGBT). Consequently, it results in a low error rate and regulated power at load side. The experimental results exhibit better performance regarding dynamic voltage variation impact, and output voltage level at load side than the existing methods.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Okedu, K.E.: Hybrid control strategy for variable speed wind turbine power converters. Int. J. Renew. Energy Res. (IJRER) 3, 283–288 (2013)
Babaie Lajimi, A., Asghar Gholamian, S., Shahabi, M.: Modeling and control of a DFIG-based wind turbine during a grid voltage drop. Eng. Technol. Appl. Sci. Res. 1, 121–125 (2011)
Blaabjerg, F., Liserre, M., Ma, K.: Power electronics converters for wind turbine systems. IEEE Trans. Ind. Appl. 48, 708–719 (2012)
Chang-Chien, L.-R., Lin, W.-T., Yin, Y.-C.: Enhancing frequency response control by DFIGs in the high wind penetrated power systems. IEEE Trans. Power Syst. 26, 710–718 (2011)
Badihi, H., Zhang, Y., Hong, H.: Wind turbine fault diagnosis and fault-tolerant torque load control against actuator faults. IEEE Trans. Control Syst. Technol. 23, 1351–1372 (2015)
Yunqian, Z., Weihao, H., Zhe, C., Ming, C., Yanting, H.: Flicker mitigation strategy for a doubly fed induction generator by torque control. IET Renew. Power Gener. 8, 91–99 (2014)
Mohseni, M., Islam, S., Masoum, M.A.: Impacts of symmetrical and asymmetrical voltage sags on DFIG-based wind turbines considering phase-angle jump, voltage recovery, and sag parameters. IEEE Trans. Power Electron. 26, 1587–1598 (2011)
Engelhardt, S., Erlich, I., Feltes, C., Kretschmann, J., Shewarega, F.: Reactive power capability of wind turbines based on doubly fed induction generators. IEEE Trans. Energy Convers. 26, 364–372 (2011)
Yang, L., Xu, Z., Østergaard, J., Dong, Z.Y., Wong, K.P., Ma, X.: Oscillatory stability and eigenvalue sensitivity analysis of a DFIG wind turbine system. IEEE Trans. Energy Convers. 26, 328–339 (2011)
Yang, L., Xu, Z., Østergaard, J., Dong, Z.Y., Wong, K.P.: Advanced control strategy of DFIG wind turbines for power system fault ride through. IEEE Trans. Power Syst. 27, 713–722 (2012)
Liang, J., Howard, D.F., Restrepo, J.A., Harley, R.G.: Feedforward transient compensation control for DFIG wind turbines during both balanced and unbalanced grid disturbances. IEEE Trans. Ind. Appl. 49, 1452–1463 (2013)
Qu, L., Qiao, W.: Constant power control of DFIG wind turbines with supercapacitor energy storage. IEEE Trans. Ind. Appl. 47, 359–367 (2011)
Xu, H., Hu, J., He, Y.: Integrated modeling and enhanced control of DFIG under unbalanced and distorted grid voltage conditions. IEEE Trans. Energy Convers. 27, 725–736 (2012)
Luna, A., Lima, F.K., Santos, D., Rodríguez, P., Watanabe, E.H., Arnaltes, S.: Simplified modeling of a DFIG for transient studies in wind power applications. IEEE Trans. Ind. Electron. 58, 9–20 (2011)
Cheng, M., Zhu, Y.: The state of the art of wind energy conversion systems and technologies: a review. Energy Convers. Manag. 88, 332–347 (2014)
Wang, L., Truong, D.-N.: Stability enhancement of a power system with a PMSG-based and a DFIG-based offshore wind farm using a SVC with an adaptive-network-based fuzzy inference system. IEEE Trans. Ind. Electron. 60, 2799–2807 (2013)
Karaagac, U., Faried, S.O., Mahseredjian, J., Edris, A.-A.: Coordinated control of wind energy conversion systems for mitigating subsynchronous interaction in DFIG-based wind farms. IEEE Trans. Smart Grid 5, 2440–2449 (2014)
Yao, J., Li, H., Chen, Z., Xia, X., Chen, X., Li, Q., et al.: Enhanced control of a DFIG-based wind-power generation system with series grid-side converter under unbalanced grid voltage conditions. IEEE Trans. Power Electron. 28, 3167–3181 (2013)
Mendis, N., Muttaqi, K.M., Perera, S.: Management of low-and high-frequency power components in demand-generation fluctuations of a DFIG-based wind-dominated RAPS system using hybrid energy storage. IEEE Trans. Ind. Appl. 50, 2258–2268 (2014)
Bourdoulis, M.K., Alexandridis, A.T.: Direct Power Control of DFIG Wind Systems Based on Nonlinear Modeling and Analysis. IEEE J. Emerg. Sel. Top. Power Electron. 2, 764–775 (2014)
Phan, V.-T., Lee, H.-H.: Performance enhancement of stand-alone DFIG systems with control of rotor and load side converters using resonant controllers. IEEE Trans. Ind. Appl. 48, 199–210 (2012)
Rezaei, E., Tabesh, A., Ebrahimi, M.: Dynamic model and control of DFIG wind energy systems based on power transfer matrix. IEEE Trans. Power Deliv. 27, 1485–1493 (2012)
Liu, Y., Wu, Q., Zhou, X., Jiang, L.: Perturbation observer based multiloop control for the DFIG-WT in multimachine power system. IEEE Trans. Power Syst. 29, 2905–2915 (2014)
Galvez, J.M., Ordonez, M.: Swinging bus operation of inverters for fuel cell applications with small DC-link capacitance. IEEE Trans. Power Electron. 30, 1064–1075 (2015)
Georgakas, K.G., Vovos, P.N., Vovos, N.: Harmonic reduction method for a single-phase DC–AC converter without an output filter. IEEE Trans. Power Electron. 29, 4624–4632 (2014)
Grbović, P.J., Delarue, P., Le Moigne, P., Bartholomeus, P.: A three-terminal ultracapacitor-based energy storage and PFC device for regenerative controlled electric drives. IEEE Trans. Ind. Electron. 59, 301–316 (2012)
Hoseini, S.K., Adabi, J., Sheikholeslami, A.: Predictive modulation schemes to reduce common-mode voltage in three-phase inverters-fed AC drive systems. Power Electron. IET 7, 840–849 (2014)
Petersson, A., Thiringer, T., Harnefors, L., Petrů, T.: Modeling and experimental verification of grid interaction of a DFIG wind turbine. IEEE Trans. Energy Convers. 20, 878–886 (2005)
Suresh, Y., Panda, A.K.: Research on a cascaded multilevel inverter by employing three-phase transformers. IET Power Electron. 5, 561–570 (2012)
Yu, J.-J.: Adaptive fuzzy stabilization for a class of pure-feedback systems with unknown dead-zones. Int. J. Fuzzy Syst. 15, 289 (2013)
June-Seok, L., Kyo-Beum, L.: Carrier-based discontinuous PWM method for vienna rectifiers. IEEE Trans. Power Electron. 30, 2896–2900 (2015)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bhanu, P., Pappa, N. SVPWM: Torque Level Controlling of Wind Turbine System Using Fuzzy and ABC-DQ Transformation. Int. J. Fuzzy Syst. 19, 141–154 (2017). https://doi.org/10.1007/s40815-016-0157-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-016-0157-1