Abstract
An alternative of fuzzy-based sliding mode control is reported in this paper so as to reduce chattering for a two degrees-of-freedom (2-DOF) platform driven by electro-pneumatic actuators. According to surface function values, a Mamdani fuzzy inference system is introduced to change the control action over the actuators and the slope of sliding surface to minimize chattering. In addition, although pneumatic actuators present high nonlinearities, experimental results are reported with attenuation of chattering and convergence toward the reference, in spite of the existence trade off between accuracy and system behavior for sliding mode controller.











Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- ε :
-
Boundary layer (m/s2)
- λ :
-
Slope of sliding surface (s−1)
- A 1 :
-
Inferior area of the chamber (m2)
- A 2 :
-
Superior area of the chamber (m2)
- A e :
-
Valve orifice area (m2)
- A v :
-
Cylinder rod transversal section (m2)
- F f :
-
Friction force (N)
- K p :
-
Gain of the pneumatic plant.
- M :
-
Mass (kg)
- P A :
-
Atmospheric pressure (m2)
- P a :
-
Output pressure (Pa)
- P s :
-
Input pressure (Pa)
- Qm :
-
Air mass flow (kg/s)
- R :
-
Perfect gas constant related to unit mass (J/kg/°K)
- s :
-
Seconds
- T :
-
Temperature (°K)
- u(t):
-
Control action
- v :
-
Velocity of the piston (m/s)
- V 1 :
-
Volume of the inferior chamber (m3)
- V 2 :
-
Volume of the superior chamber (m3)
- y :
-
Cylinder piston displacement (m)
- s(e):
-
Sliding surface function (m/s2)
References
Abdelsalam, M.M., Areed, M.F.: Decoupled fuzzy sliding mode control for a synchronous motor speed control. Int. J. Comput. Appl. 47, 29–35 (2012)
Amer, A.F., Sallam, E.A., Elawady, W.M.: Adaptive fuzzy sliding mode control using supervisory fuzzy control for 3 dof planar robot manipulators. Appl. Soft Comput. 11, 4943–4953 (2011)
Beyhan, S.: Adaptive fuzzy terminal sliding-mode observer with experimental applications. Int. J. Fuzzy Syst. 62, 1–10 (2013)
Boldbaatar, E.-A., Lin, C.-M.: Self-learning fuzzy sliding-mode control for a water bath temperature control system. Int. J. Fuzzy Syst. 17, 31–38 (2015)
Brun, X., Belgharbi, M., Sesmat, S., Thomasset, D., Scavarda, S.: Control of an electropneumatic actuator: comparison between some linear and non-linear control laws. Proc. Inst. Mech. Eng., Part I 213, 387–406 (1999)
Burrows, C.R.: Fluid Power Servomechanisms. Van Nostrand, London (1972)
Cao, L., Sheng, T., & Chen, X.: A non-singular terminal adaptive fuzzy sliding-mode controller. In Proceedings of the IEEE Digital Manufacturing and Automation Conference. IEEE, pp. 74–80 (2011)
Chang, M.-K.: An adaptive self-organizing fuzzy sliding mode controller for a 2-dof rehabilitation robot actuated by pneumatic muscle actuators. Control Eng. Pract. 18, 13–22 (2010)
Chang, Y.-H., Yang, C.-Y., Chan, W.-S., Lin, H.-W., Chang, C.-W.: Adaptive fuzzy sliding-mode formation controller design for multi-robot dynamic systems. Int. J. Fuzzy Syst. 16, 121 (2014)
Chettouh, M., Toumi, R., Hamerlain, M.: High-order sliding modes for a robot driven by pneumatic artificial rubber muscles. Adv. Robot. 22, 689–704 (2008)
Fridman, L., Levant, A.: Sliding Mode Control in Engineering, vol. 3. Marcel Dekker, Inc., New York (2002)
Girin, A., Plestan, F., Brun, X., Glumineau, A., & Smaoui, M.: High gain and sliding mode observers for the control of an electropneumatic actuator. In Proceedings of the IEEE International Conference on Control Application, pp. 3128–3133 (2006)
Glumineau, A., Fridman, L., Plestan, F.: Variable structure systems techniques in applications vss/smc. Control Eng. Pract. 21, 669–670 (2013)
Islam, S., Liu, P.X.: Robust sliding mode control for robot manipulators. IEEE Trans. Ind. Electron. 58, 2444–2453 (2011)
ISO-6358.: Pneumatic fluid power—Components using compressible fluids—Determinations of flow-rate characteristics (1989)
Kim, S.-W., Lee, J.-J.: Design of a fuzzy controller with fuzzy sliding surface. Fuzzy Sets Syst. 71, 359–367 (1995)
Korondi, P., & Gyeviki, J.: Robust position control for a pneumatic cylinder. In Proceedings of the IEEE Power Electronics and Motion Control Conference, pp. 513–518 (2006)
Krivts, I.L., Krejnin, G.V.: Pneumatic Actuating Systems for Automatic Equipment: structure and Design. Taylor & Francis Group, New York (2006)
Laghrouche, S., Liu, J., Ahmed, F.S., Harmouche, M., Wack, M.: Adaptive second-order sliding mode observer-based fault reconstruction for pem fuel cell air-feed system. IEEE Trans. Control Syst. Technol. 23, 1098–1109 (2015)
Laghrouche, S., Plestan, F., Glumineau, A.: Higher order sliding mode control based on integral sliding mode. Automatica 43, 531–537 (2007)
Li, H., Gao, H., Shi, P., Zhao, X.: Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach. Automatica 50, 1825–1834 (2014)
Lin, C.-M., Hsu, C.-F., Chen, T.-Y.: Adaptive fuzzy total sliding-mode control of unknown nonlinear systems. Int. J. Fuzzy Syst. 14, 434–443 (2012)
Liu, J., Laghrouche, S., Harmouche, M., Wack, M.: Adaptive-gain second-order sliding mode observer design for switching power converters. Control Eng. Pract. 30, 124–131 (2014a)
Liu, J., Laghrouche, S., Wack, M.: Observer-based higher order sliding mode control of power factor in three-phase ac/dc converter for hybrid electric vehicle applications. Int. J. Control 87, 1117–1130 (2014b)
Mamdani, E.H.: Application of fuzzy algorithms for control of simple dynamic plant. In Proceedings of the Institution of Electrical Engineers, IET volume 121, pp. 1585–1588 (1974)
Merlet, J.: Parallel Robots, vol. 128, 2nd edn. Springer, Paris (2006)
Nazir, M.B., Wang, S.: Optimized fuzzy sliding mode control to enhance chattering reduction for nonlinear electro-hydraulic servo system. Int. J. Fuzzy Syst. 12, 291–299 (2010)
Noroozi, N., Roopaei, M., Jahromi, M.Z.: Adaptive fuzzy sliding mode control scheme for uncertain systems. Commun. Nonlinear Sci. Numer. Simul. 14, 3978–3992 (2009)
Rubio, E., Hernández, L., Aracil, R., Saltaren, R., & Guerra, J.: Implementation of Decoupled Model- Based Controller in a 2-DOF Pneumatic Platform used in Low- Cost Driving Simulators. In Proceedings of the IEEE Electronics, Robotics and Automotive Mechanics, pp. 338–343 (2009)
Shi, G., Shen, W.: Hybrid control of a parallel platform based on pneumatic artificial muscles combining sliding mode controller and adaptive fuzzy cmac. Control Eng. Pract. 21, 76–86 (2013)
Slotine, J.J., Li, W.: Applied Nonlinear Control. Prentice Hall, Upper Saddle River (1991)
Utkin, V., Guldner, J., Shijun, M.: Sliding Mode Control in Electro-mechanical Systems, vol. 34. CRC Press, Boca Raton (1999)
Utkin, V.I.: Sliding Modes in Control and Optimization: communications and Control Engineering Series. Springer, Berlin (1992)
Wu, L., Su, X., Shi, P.: Sliding mode control with bounded L 2 gain performance of Markovian jump singular time-delay systems. Automatica 48, 1929–1933 (2012)
Acknowledgments
The authors thank the suggestions of Dr. Xavier Brun, of the Institut National des Sciences Appliques de Lyon, France. The authors gratefully acknowledge the anonymous reviewers whose comments strengthened the paper.
Funding
This paper have been partially funded by Tecnologico Nacional de Mexico under Grants 5424.14-P, 5424.14.15-PR, and 5627.15-P.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Prieto, P.J., Cazarez-Castro, N.R., Aguilar, L.T. et al. Fuzzy Slope Adaptation for the Sliding Mode Control of a Pneumatic Parallel Platform. Int. J. Fuzzy Syst. 19, 167–178 (2017). https://doi.org/10.1007/s40815-016-0163-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-016-0163-3