Skip to main content

Advertisement

Log in

Fuzzy Climate Decision Support Systems for Tomatoes in High Tunnels

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper presents a novel climate decision support system for tomatoes in high tunnels using fuzzy logic and adaptive neuro-fuzzy inference system. Three climate decision support systems are developed for high tunnels using fuzzy logic. First climate decision support system takes five inputs—temperature, relative humidity, solar radiations, wind velocity, and weather condition—and controls four outputs—tunnel’s temperature, tunnel’s humidity, fan speed, and shading. Second climate decision support system takes three inputs—temperature, solar radiations, and weather condition—and controls artificial sunlight. Third climate decision support system takes air quality index and controls air purification. We develop and implement the two main algorithms for climate control systems, one algorithm is for fuzzy logic climate decision support system, and other one is for neuro-fuzzy climate control system. We compute time complexity of both algorithms. We use software MATLAB for showing average error between calculated and targeted outputs. We also perform optimization of fuzzy membership functions using particle swarm optimization method and evaluate its results in MATLAB. Our generated results are very much precise and satisfied the desired range of outputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  2. Akram, M., Habib, S., Javed, I.: Intuitionistic fuzzy logic control for washing machines. Indian J. Sci. Technol. 7(5), 654–661 (2014)

    Google Scholar 

  3. He, Y., Chen, H., Zhou, L., Liu, J., Tao, Z.: Generalized interval-valued Atanassovs intuitionistic fuzzy power operators and their application to group decision making. Int. J. Fuzzy Syst. 15(4), 401–411 (2013)

    MathSciNet  Google Scholar 

  4. Pan, Y., Er, M.J.: Enhanced adaptive fuzzy control with optimal approximation error convergence. IEEE Trans. Fuzzy Syst. 21(6), 1123–1132 (2013)

    Article  Google Scholar 

  5. Pan, Y., Er, M.J., Li, X., Yu, H., Gouriveau, R.: Machine health condition prediction via online dynamic fuzzy neural networks. Eng. Appl. Artif. Intell. 35, 105–113 (2014)

    Article  Google Scholar 

  6. He, Y.D., He, Z., Wang, G.D., Chen, H.Y.: Hesitant fuzzy power Bonferroni means and their application to multiple attribute decision making. IEEE Trans. Fuzzy Syst. 18, 94–105 (2015)

    Google Scholar 

  7. Sriraman, A., Mayorga, R.V.: Climate control inside a greenhouse: an intelligence system approach using fuzzy logic programming. J. Environ. Inf. 10(2), 68–74 (2007)

    Article  Google Scholar 

  8. Candido, A., Cicirelli, F., Furfaro, A., Nigro, L.: Embedded real-time system for climate control in a complex greenhouse. Int. Agrophys. 21(1), 17–27 (2007)

    Google Scholar 

  9. Javadikia, P., Tabatabaeefar, A., Omid, M., Alimardani, R., Fathi, M.: Evaluation of intelligent greenhouse climate control system, based fuzzy logic in relation to conventional systems. In: IEEE International Conference on Artificial Intelligence and Computational Intelligence, vol. 4, pp 146–150 (2009)

  10. Dhamakale, S.D., Patil, S.B.: Fuzzy logic approach with microcontroller for climate controlling in green house. Int. J. Emerg. Technol. 2(1), 17–19 (2011)

    Google Scholar 

  11. Chen, F., Tang, Y.N., Shen, M.Y.: Coordination control of greenhouse environmental factors. Int. J. Autom. Comput. 8(2), 147–153 (2011)

    Article  Google Scholar 

  12. Feki, E., Chouchaine, A., Mami, A.: Thermal control of a greenhouse by variation in ventilation rate using a fuzzy parallel distributed compensation controller with an RST regulator in each rule. Am. J. Appl. Sci. 9, 979–987 (2012)

    Article  Google Scholar 

  13. Guerbaoui, M., Ed-dahhak, A., ElAfou, Y., Lachhab, A., Belkoura, L., Bouchikhi, B.: Implementation of direct fuzzy controller in greenhouse based on labview. Int. J. Electr. Electron. Eng. Stud. 1(1), 1–13 (2013)

    Article  Google Scholar 

  14. Azaza, M., Echaieb, K., Tadeo, F., Fabrizio, E., Iqbal, A., Mamiet, A.: Fuzzy decoupling control of greenhouse climate. Arab. J. Sci. Eng. 40(9), 2805–2812 (2015)

    Article  Google Scholar 

  15. Efren, G.H., Carlos, J., Antonio, A.F., Manuel, J., Sal, T.A., Artemio, S.O.: Fuzzy logic—emerging technologies and applications. In: Greenhouse Fuzzy and Neuro-Fuzzy Modeling Techniques, INTECH Open Access (2012)

  16. Habib, S., Akram, M.: Neuro-fuzzy control for heater fans using ANFIS and NEFCON. J. Adv. Res. Comput. Sci. 6(2), 6–16 (2014)

    Google Scholar 

  17. Ashraf, A., Akram, M., Sarwar, M.: Fuzzy decision support system for fertilizer. Neural Comput. Appl. 25(6), 1495–1505 (2014)

    Article  Google Scholar 

  18. Ashraf, A., Akram, M., Sarwar, M.: Type-II fuzzy decision support system for fertilizer. Sci. World J. 2014, Article ID 695815 (2014)

  19. Akram, M., Ashraf, A., Sarwar, M.: Novel applications of intuitionistic fuzzy digraphs in decision support systems. Sci. World J. 2014, Article ID 904606 (2014)

  20. Hahn, F.: Irrigation fuzzy controller reduce tomato cracking. Int. J. Adv. Comput. Sci. Appl. 2(11), 106 (2011)

    Google Scholar 

  21. Ed-dahhak, A., Guerbaoui, M., ElAfou, Y., Outanoute, M., Lachhab, A., Belkoura, L., Bouchikhi, B.: Implementation of fuzzy controller to reduce water irrigation in greenhouse using LabView. Int. J. Eng. Adv. Technol. Stud. 1(2), 12–22 (2013)

    Google Scholar 

  22. Boldbaatar, E.A., Lin, C.M.: Self-learning fuzzy sliding-mode control for a water bath temperature control system. Int. J. Fuzzy Syst. 17(1), 31–38 (2015)

    Article  Google Scholar 

  23. Huang, H.C., Xu, S.D., Chiang, C.H.: Optimal fuzzy controller design using an evolutionary strategy-based particle swarm optimization for redundant wheeled robots. Int. J. Fuzzy Syst. 17(3), 390–398 (2015)

    Article  MathSciNet  Google Scholar 

  24. Logeswaran, T., Senthilkumar, A., Karuppusamy, P.: Adaptive neuro-fuzzy model for grid-connected photovoltaic system. Int. J. Fuzzy Syst. 17(4), 585–594 (2015)

    Article  Google Scholar 

  25. Kia, P.J., Far, A.T., Omid, M., Alimardani, R., Naderloo, L.: Intelligent control based fuzzy logic for automation of greenhouse irrigation system and evaluation in relation to conventional systems. World Appl. Sci. J. 6(1), 16–23 (2009)

    Google Scholar 

  26. Treshow, M.: Air Pollution and Plant Life. Wiley, New York (1984). ISBN13: 978-0471490913

  27. Lee, K.H.: First Course on Fuzzy Theory and Applications. Springer, Berlin (2005)

    MATH  Google Scholar 

  28. Nasir, M.: Off-Season vegetable farming in tunnels. http://www.nbp.com.pk/Agriculture /TunnelFarmingReport (2011). Accessed 20 June 2015

  29. Jones, J., Benton, J.: Tomato Plant Culture: In the Field, Greenhouse, and Home Garden. CRC Press, Boca Raton (2007). ISBN -13: 978-0849373954

  30. Mintz, D.: Guideline for reporting of daily air qualityair quality index (AQI). http://www.epa.gov/ttn/caaa/t1/memoranda/rg701 (2006). Accessed 15 May 2015

  31. Kipp, J.A.: Optimal climate regions in Mexico for greenhouse crop production. http://mexico.nlambassade.org/binaries/content/assets/postenweb/m/mexico/nederlandse-ambassade-in-mexico-stad/import/producten_en_diensten/landbouw/optimal-climate-regions-in-mexico-for-greenhouse-crop-production (2010). Accessed 21 June 2015

  32. World Map of Global Horizontal Irradiation: http://solargis.info/doc/_pics/freemaps/1000px/ghi/SolarGIS-Solar-map-World-map-en. Accessed 19 May 2015

  33. Record-Setting Weather: http://www.weatherexplained.com/Vol-1/Record-Setting-Weather.html (2015). Accessed 19 May 2015

  34. Beaufort Scale: https://en.wikipedia.org/wiki/Beaufort_scale. Accessed 23 May 2015

  35. Rao, D.H., Saraf, S.S.: Study of defuzzification methods of fuzzy logic controller for speed control of a dc motor. In: IEEE international conference on power electronics, drives and energy systems for industrial growth, vol. 2, pp. 782–787 (1996)

  36. Sugeno, M.: Industrial Applications of Fuzzy Control. Elsevier, New York (1985)

    MATH  Google Scholar 

  37. Vieira, J., Dias, F.M., Alexandre, M.: Neuro-fuzzy systems: a survey. In: 5th WSEAS NNA international conference on neural networks and applications (2004)

  38. Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  39. Lin, C.T., Lee, G.: Neural-network-based fuzzy logic control and decision system. IEEE Trans. Comput. 40(12), 1320–1336 (1991)

    Article  MathSciNet  Google Scholar 

  40. Berenji, H.R., Khedkar, P.: Learning and tuning fuzzy logic controllers through reinforcements. IEEE Trans. Neural Netw. 3(5), 724–740 (1992)

    Article  Google Scholar 

  41. Nauck, D., Kruse, R.: Neuro-fuzzy systems for function approximation. Fuzzy Sets Syst. 101(2), 261–271 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Habib, S., Akram, M.: Decision-making system for washing machine using AIFNN. Math. Sci. Lett. 4, 303–311 (2015)

    Google Scholar 

  43. Benmiloud, T.: Multi-output adaptive neuro-fuzzy inference system. In: WSEAS international conference on neural networks, vol. 11 (2010)

  44. Horikawa, S., Furuhashi, T., Uchikawa, Y.: On fuzzy modeling using fuzzy neural networks with the back-propagation algorithm. IEEE Trans. Neural Netw. 3(5), 801–806 (1992)

    Article  Google Scholar 

  45. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: IEEE international conference on neural networks, vol. 4, pp. 142–148 (1995)

Download references

Acknowledgments

The authors are highly thankful to an Associate Editor and the honorable referees for their valuable comments and suggestions for improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habib, S., Akram, M. & Ashraf, A. Fuzzy Climate Decision Support Systems for Tomatoes in High Tunnels. Int. J. Fuzzy Syst. 19, 751–775 (2017). https://doi.org/10.1007/s40815-016-0183-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-016-0183-z

Keywords

Mathematics Subject Classification