Abstract
Coronary artery disease affects millions of people all over the world including a major portion in Egypt every year. Although much progress has been done in medical science, early detection of this disease is still a challenge for prevention. In this paper we, will extend the concept of fuzzy soft set theory so as to develop a knowledge-based system in medicine and devise a prediction system named fuzzy soft expert system consisting of four main components. These are a fuzzification which translates inputs into fuzzy values, fuzzification of data sets to obtain fuzzy soft sets, a new fuzzy soft set by normal parameter reduction of fuzzy soft set and an algorithm to produce the resultant output. The fuzzy soft expert system developed is then used to predict for coronary artery disease using systolic blood pressure, low-density lipoprotein cholesterol, maximum heart rate, blood sugar, old peak and age of patients. A preliminary study is conducted on nine male patients undergoing treatment in the Cardiac Unit of the Faculty of Medicine, Assiut University, Egypt. It is found that the fuzzy soft expert system developed is able is to help the expert doctor to decide whether a patient needs to be given drug therapy or intervention.
Access this article
Rent this article via DeepDyve
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs40815-016-0255-0/MediaObjects/40815_2016_255_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs40815-016-0255-0/MediaObjects/40815_2016_255_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs40815-016-0255-0/MediaObjects/40815_2016_255_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs40815-016-0255-0/MediaObjects/40815_2016_255_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs40815-016-0255-0/MediaObjects/40815_2016_255_Fig5_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs40815-016-0255-0/MediaObjects/40815_2016_255_Fig6_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs40815-016-0255-0/MediaObjects/40815_2016_255_Fig7_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs40815-016-0255-0/MediaObjects/40815_2016_255_Fig8_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs40815-016-0255-0/MediaObjects/40815_2016_255_Fig9_HTML.jpg)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs40815-016-0255-0/MediaObjects/40815_2016_255_Fig10_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs40815-016-0255-0/MediaObjects/40815_2016_255_Fig11_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs40815-016-0255-0/MediaObjects/40815_2016_255_Fig12_HTML.gif)
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Park, K.: Park ’s Textbook of Preventive and Social Medicine. Banarsidas Bhanot, Madhya Pradesh (2015)
Schuster, A., Adamson, K., Bell, D.A.: Decision-making on fuzzy pieces of evidence. In: Workshop on Intelligent Data Analysis in Medicine and Pharmacology, pp. 114–116. Washington DC, USA (1999)
Miller, R.A., Pople, H.E., Myers, J.D.: INTERNIST-1: an experimental computer based diagnostic consultant for general internal medicine. N. Engl. J. Med. 307(8), 468–476 (1982)
Adlassnig, K.P., Kolarz, G.: Computer-assisted medical diagnosis using fuzzy subsets. In: Gupta, M.M., Sanchez, E. (eds.) Approximate Reasoning In Decision Analysis, pp. 219–247 (1982)
Vaisi-Raygani, A., Ghaneialvar, H., Rahimi, Z., Nomani, H., Saidi, M., Bahrehmand, F., Tavilani, H., Pourmotabbed, T.: The angiotensin converting enzyme D allele is an independent risk factor for early onset coronary artery disease. Clin. Biochem. 43(15), 1189–1194 (2010)
Genest, J.J., Bard, J.M., Fruchart, J.C., Ordovas, J.M., Wilson, P.F., Schaefer, E.J.: Plasma apolipoprotein A-I, A-II, B, E and C-III containing particles in men with premature coronary artery disease. Atherosclerosis 90(2–3), 149–157 (1991)
Chirinos, J.A., Veerani, A., Zambrano, J.P., Schob, A., Perez, G., Mendez, A.J., Chakko, S.: Evaluation of comorbidity scores to predict all-cause mortality in patients with established coronary artery disease. Int. J. Cardiol. 117(1), 97–102 (2007)
Gamberger, D., Lavrač, N., Krstačić, G.: Active subgroup mining: a case study in coronary heart disease risk group detection. Artif. Intell. Med. 28(1), 27–57 (2003)
Wung, S.F., Drew, B.: Comparison of 18-lead ECG and selected body surface potential mapping leads in determining maximally deviated ST lead and efficacy in detecting acute myocardial ischemia during coronary occlusion. J. Electrocardiol. 32, 30–37 (1999)
Ranjith, P., Baby, P.C., Joseph, P.: ECG analysis using wavelet transform: application to myocardial ischemia detection. ITBM-RBM 24(1), 44–47 (2003)
Ge, D., Sun, L., Zhou, J., Shao, Y.: Discrimination of myocardial infarction stages by subjective feature extraction. Comput. Methods Prog. Biomed. 95(3), 270–279 (2009)
Turkoglu, I., Arslan, A., Ilkay, E.: An expert system for diagnosis of the heart valve diseases. Expert Syst. Appl. 23(3), 229–236 (2002)
Polat, K., Sahan, S., Günes, S.: A new method to medical diagnosis: artificial immune recognition system (AIRS) with fuzzy weighted pre-processing and application to ECG arrhythmia. Expert Syst. Appl. 31(2), 264–269 (2006)
Polat, K., Sahan, S., Günes, S.: Automatic detection of heart disease using an artificial immune recognition system (AIRS) with fuzzy resource allocation mechanism and K-Nn (nearestneighbour) based weighting preprocessing. Expert Syst. Appl. 32(2), 625–631 (2007)
Martis, R.J., Chakraborty, C., Ray, A.K.: A two-stage mechanism for registration and classification of ECG using Gaussian Mixture Model. Pattern. Recog. 42(11), 2979–2988 (2009)
Martis, R.J., Krishnan, M.M.R., Chakraborty, C., Pal, S., Sarkar, D., Mandana, K.M., Ray, A.K.: Automated screening of arrhythmia using wavelet based machine learning techniques. J. Med. Syst. 36(2), 677–88 (2012)
Martis, R.J., Chakraborty, C.: Arrhythmia disease diagnosis using neural network using SVM and genetic algorithm optimized k-means clustering. J. Mech. Med. Biol. 11(4), 897–915 (2011)
Kochurani, O.G., Aji, S., Kamal, M.R.: A neuro fuzzy decision tree model for predicting the risk in coronary artery disease. IEEE 22nd International Symposium on Intelligence Control ISIC 2007, pp. 166–171 (2007)
Tsipouras, M.G., Exarchos, T.P., Fotiadis, D.I., Kotsia, A.P., Vakalis, K.V., Naka, K.K., Michalis, L.K.: Automated diagnosis of coronary artery disease based on data mining and fuzzy modelling. IEEE Trans. Inf. Technol. Biomed. 12(4), 447–458 (2008)
Kurt, I., Ture, M., Kurum, A.T.: Comparing performances of logistic regression, classification and regression tree and neural networks for predicting coronary artery disease. Expert Syst. Appl. 34(1), 366–374 (2008)
Das, R., Turkoglu, I., Sengur, A.: Effective diagnosis of heart disease through neural networks ensembles. Expert Syst. Appl. 36(4), 7675–7680 (2009)
Adeli, A., Neshat, M.: A fuzzy expert system for heart disease diagnosis. In: Proceedings of International Multi Conference of Engineers and Computer Scientists, vol. 1, pp. 134–139. Hong Kong (2010)
Kumar, P.G., Victoire, T.A.A., Renukadevi, P., Devaraj, D.: Design of fuzzy expert system for microarray data classification using a novel genetic swarm algorithm. Expert Syst. Appl. 39(2), 1811–1821 (2012)
Muthukaruppan, S., Er, M.J.: A hybrid particle swarm optimization based fuzzy expert system for the diagnosis of coronary artery disease. Expert Syst. Appl. 39(14), 11657–11665 (2012)
Nahar, J., Imam, T., Tickle, K.S., Chen, Y.P.P.: Association rule mining to detect factors which contribute to heart disease in males and females. Expert Syst. Appl. 40(4), 1086–1093 (2013)
Mohammadpour, R.A., Abedi, S.M., Bagheri, S., Ghaemian, A.: Fuzzy rule-based classification system for assessing coronary artery disease. Comput. Math. Methods Med. (2015). doi:10.1155/2015/564867
Hedeshi, N.G., Abadeh, M. S.: Coronary artery disease detection using a fuzzy-boosting PSO approach. Comput. Intell. Neurosci.(2014). doi:10.1155/2014/783734
Patidar, S., Pachori, R.B., Acharya, U.R.: Automated diagnosis of coronary artery disease using tunable-Q wavelet transform applied on heart rate signals. Knowl. Based Syst. (2015). doi:10.1016/j.knosys.2015.02.011
Negahbani, M., Joulazadeh, S., Marateb, H.R., Mansourian, M.: Coronary artery disease diagnosis using supervised fuzzy C-means with differential search algorithm based generalized Minkowski metrics. Peertechz J. Biomed. Eng. 1(1), 6–14 (2015)
Molodtsov, D.: Soft set theory-first results. Comput. Math. Appl. 37(4–5), 19–31 (1999)
Maji, P.K., Biswas, R., Roy, A.R.: Soft set theory. Comput. Math. Appl. 45(4–5), 555–562 (2003)
Maji, P.K., Biswas, R., Roy, A.R.: Fuzzy soft sets. J. Fuzzy Math. 9(3), 589–602 (2001)
Roy, A.R., Maji, P.K.: A fuzzy soft set theoretic approach to decision making problems. J. Comput. Appl. Math. 203(2), 412–418 (2007)
Kong, Z., Gao, L., Wang, L.: Comment on “A fuzzy soft set theoretic approach to decision making problems”. J. Comput. Appl. Math. 223(2), 540–542 (2009)
Feng, F., Jun, Y.B., Liu, X.Y., Li, L.F.: An adjustable approach to fuzzy soft set based decision making. J. Comput. Appl. Math. 234(1), 10–20 (2010)
Zadeh, L.A.: Fuzzy sets. Inf. Control. 8, 338–353 (1965)
Kong, Z., Gao, L., Wang, L., Li, S.: The normal parameter reduction of soft sets and its algorithm. Comput. Math. Appl. 56(12), 3029–3037 (2008)
Sikchi, S.S., Sikchi, S., Ali, M.S.: Design of fuzzy expert system for diagnosis of cardiac diseases. Int. J. Med. Sci. Public Health 2(1), 56–61 (2013)
Allahverdi, N., Torun, S., Saritas, I.: Design of a fuzzy expert system for determination of coronary heart disease risk. In: International Conference on Computer System and Technologies (2007)
Acknowledgments
We are indebted to Universiti Kebangsaan Malaysia for providing financial support for this research under the Grant DPP-2015-FST.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hassan, N., Sayed, O.R., Khalil, A.M. et al. Fuzzy Soft Expert System in Prediction of Coronary Artery Disease. Int. J. Fuzzy Syst. 19, 1546–1559 (2017). https://doi.org/10.1007/s40815-016-0255-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-016-0255-0