Skip to main content
Log in

Uncertain Solid Transportation Problem with Product Blending

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In order to satisfy the required quality of demand points in a practical transportation system of chemical products such as petroleum and gasoline, blending of products should be considered. In this paper, we have considered a solid transportation problem with product blending in an uncertain environment, in which the fixed charges of vehicles and the unit transportation costs of products are assumed to be uncertain variables. Using different criteria to rank uncertain variables, we have constructed uncertain models for this problem, namely expected cost minimization model (ECMM) and chance-constrained uncertain model (CCUM). Within the framework of uncertainty theory, we prove that both of ECMM and CCUM can be transformed into the corresponding deterministic forms. Numerical examples are presented to illustrate the models, and the results are obtained by using the standard optimization solver Gurobi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bit, A.K., Biswal, M.P., Alam, S.S.: Fuzzy programming approach to multi-objective solid transportation problem. Fuzzy Sets Syst. 57, 183–194 (1993)

    Article  MATH  Google Scholar 

  2. Charnes, A., Cooper, W.W.: Constrained-chance programming. Manag. Sci. 6(1), 73–79 (1959)

    Article  MATH  Google Scholar 

  3. Deng, L., Zhu, Y.: Uncertain optimal control of linear quadratic models with jump. Math. Comput. Model. 57(9–10), 2432–2441 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. DeWitt, C., Lasdon, L., Waren, A., Brenner, D., Melhem, S.: OMEGA: an improved gasoline blending system for Texaco. Interfaces 19(1), 85101 (1989)

    Article  Google Scholar 

  5. Gao, Y.: Shortest path problem with uncertain arc lengths. Comput. Math. Appl. 62(6), 2591–2600 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gao, Y.: Uncertain models for single facility location problems on networks. Appl. Math. Model. 36(6), 2592–2599 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gao, Y., Wen, M., Ding, S.: (s, S) policy for uncertain single-peorid inventroy problem. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 21(6), 945–953 (2013)

    Article  MATH  Google Scholar 

  8. Gao, Y., Yang, L., Li, S., Kar, S.: On distribution function of the diameter in uncertain graph. Inf. Sci. 296, 61–74 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gao, Y., Qin, Z.: On computing the edge-connectivity of an uncertain graph. IEEE Trans. Fuzzy Syst. 24(4), 981–991 (2016)

  10. Gen, M., Ida, K., Li, Y., Kubota, E.: Solving bicriteria solid transportation problem with fuzzy numbers by a genetic algorithm. Comput. Ind. Eng. 29, 537–541 (1995)

    Article  Google Scholar 

  11. Haley, K.B.: The solid transportation problem. Oper. Res. Int. J. 11, 446–448 (1962)

    MATH  Google Scholar 

  12. Jiménez, F., Verdegay, J.L.: Solving fuzzy solid transportation problems by an evolutionary algorithm based parametric approach. Eur. J. Oper. Res. 117, 485–510 (1999)

    Article  MATH  Google Scholar 

  13. Kundu, P., Kar, S., Maiti, M.: Multi-objective multi-item solid transportation problem in fuzzy environment. Appl. Math. Model. 37, 2028–2038 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kundu, P., Kar, S., Maiti, M.: Multi-objective solid transportation problems with budget constraint in uncertain environment. Int. J. Syst. Sci. 45(8), 1668–1682 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kundu, P., Kar, M.B., Kar, S., Pal, T., Maiti, M.: A solid transportation model with product blending and parameters as rough variables. Soft Comput. (2015). doi:10.1007/s00500-015-1941-9

  16. Li, Y., Ida, K., Gen, M., Kobuchi, R.: Neural network approach for multicriteria solid transportation problem. Comput. Ind. Eng. 33, 465–468 (1997)

    Article  Google Scholar 

  17. Li, Y., Ida, K., Gen, M.: Improved genetic algorithm for solving multiobjective solid transportation problem with fuzzy numbers. Comput. Ind. Eng. 33, 589–592 (1997)

    Article  Google Scholar 

  18. Liu, B.: Uncertainty Theory, 2nd edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  19. Liu, B.: Some research problems in uncertainty theory. J. Uncertain Syst. 3(1), 3–10 (2009)

    Google Scholar 

  20. Liu, B.: Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty. Springer, Berlin (2010)

    Book  Google Scholar 

  21. Löfberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference, Taipei, Taiwan (2004)

  22. Méndez, C.A., Grossmann, I.E., Harjunkoski, I., Kaboré, P.: A simultaneous optimization approach for off-line blending and scheduling of oil-refinery operations. Comput. Chem. Eng. 30, 614–634 (2006)

    Article  Google Scholar 

  23. Misener, R., Floudas, C.A.: Advances for the pooling problem: modeling, global optimization, and computational studies survey. Appl. Comput. Math. 8(1), 322 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Nagarjan, A., Jeyaraman, K.: Solution of chance constrained programming problem for multi-objective interval solid transportation problem under stochastic environment using fuzzy approach. Int. J. Comput. Appl. 10(9), 19–29 (2010)

    Google Scholar 

  25. Ojha, A., Das, B., Mondal, S., Maity, M.: An entropy based solid transportation problem for general fuzzy costs and time with fuzzy equality. Math. Comput. Model. 50(1–2), 166–178 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Papageorgiou, D.J., Toriello, A., Nemhauser, G.L., Savelsbergh, M.W.P.: Fixed-charge transportation with product blending. Transp. Sci. 46(2), 281–295 (2012)

    Article  Google Scholar 

  27. Qin, Z., Kar, S.: Single-period inventory problem under uncertain environment. Appl. Math. Comput. 219(18), 9630–9638 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Rigby, B., Lasdon, L., Waren, A.: The evolution of Texacos blending systems: From OMEGA to StarBlend. Interfaces 25(5), 6483 (1995)

    Article  Google Scholar 

  29. Romo, F., Tomasgard, A., Hellemo, L., Fodstad, M., Eidesen, B.H., Pedersen, B.: Optimizing the Norwegian natural gas production and transport. Interfaces 39(1), 4656 (2009)

    Article  Google Scholar 

  30. Schell, E.D.: Distribution of a product by several properties. In: Proceedings 2nd Symposium in Linear Programming, DCS/Comptroller, HQ US Air Force, Washington, pp. 615–642 (1955)

  31. Yang, L., Feng, Y.: A bicriteria solid transportation problem with fixed charge under stochastic environment. Appl. Math. Model. 31, 2668–2683 (2007)

    Article  MATH  Google Scholar 

  32. Zhang, B., Peng, J.: Uncertain programming model for chinese postman problem with uncertain weights. Ind. Eng. Manag. Syst. 11(1), 18–25 (2012)

    Google Scholar 

  33. Zhu, Y.: Uncertain optimal control with application to a portfolio selection model. Cybern. Syst. 41(7), 535–547 (2010)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (Nos. 71401008, 71401007 and 71571018), the Fundamental Research Funds for the Central Universities (No. 2014RC038), the State Key Laboratory of Rail Traffic Control and Safety (No. RCS2016ZZ001), Beijing Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samarjit Kar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Kar, S. Uncertain Solid Transportation Problem with Product Blending. Int. J. Fuzzy Syst. 19, 1916–1926 (2017). https://doi.org/10.1007/s40815-016-0282-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-016-0282-x

Keywords

Navigation