Abstract
Prior knowledge has been considered as valuable supplementary information in many image processing techniques. In this paper, we take the input image itself as the guidance prior and develop a novel fuzzy clustering algorithm to segment it by adding a new term to the objective function of Fuzzy C-Means. The new term comes from Guided Filter for its capability in noise suppression and edge-preserving smoothing. As a result, the memberships derived from the new objective function incorporate the guidance information from the image to be segmented. In this way, the segmentation result retains more subtle details on the boundaries of segments. According to experimental results, the proposed method shows good performance in image segmentation tasks especially for images with high noise rates.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy C-Means clustering algorithm. Computers & Geosciences 10(2–3), 191–203 (1984)
Boland, M.V., Murphy, R.F.: A neural network classifier capable of recognizing the patterns of all major subcellular structures in fluorescence microscope images of hela cells. Bioinformatics 17(12), 1213–1223 (2001)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)
Cao, H., Deng, H.W., Wang, Y.P.: Segmentation of M-FISH images for improved classification of chromosomes with an adaptive Fuzzy C-Means clustering algorithm. IEEE Trans. Fuzzy Syst. 20(1), 1–8 (2012)
Chen, L., Chen, C.P., Lu, M.: A multiple-kernel fuzzy C-Means algorithm for image segmentation. IEEE Trans. Syst. Man Cybern. Part B Cybern. 41(5), 1263–1274 (2011)
Chen, L., Zou, J., Chen, C.P.: Kernel spatial shadowed C-Means for image segmentation. Int. J. Fuzzy Syst. 16(1), 46 (2014)
Chuang, K.S., Tzeng, H.L., Chen, S., Wu, J., Chen, T.J.: Fuzzy C-Means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph. 30(1), 9–15 (2006)
Cocosco, C.A., Kollokian, V., Kwan, R.K.-S., Evans, A.C.: Brainweb: online interface to a 3D MRI simulated brain database. NeuroImage 5(4), 425 (1997)
Dambreville, S., Rathi, Y., Tannenbaum, A.: A framework for image segmentation using shape models and kernel space shape priors. IEEE Trans. Pattern Anal. Mach. Intell. 30(8), 1385–1399 (2008)
Duan, J., Chen, L., Chen, C.P.: Region-based multi-focus image fusion using guided filtering and greedy analysis. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2015. pp. 2932–2937. IEEE (2015)
Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 32–57 (1973)
Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the Nystrom method. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 214–225 (2004)
Guo, P., Chen, C.P., Lyu, M.R.: Cluster number selection for a small set of samples using the Bayesian Ying–Yang model. IEEE Trans. Neural Netw. 13(3), 757–763 (2002)
Hallac, D., Leskovec, J., Boyd, S.: Network lasso: Clustering and optimization in large graphs. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 387–396. ACM (2015)
He, K., Sun, J., Tang, X.: Guided image filtering. In: Kostas, D., Petros, M., Paragios, N. (eds.) Computer Vision–ECCV 2010, pp. 1–14. Springer (2010)
Ji, Z., Xia, Y., Chen, Q., Sun, Q., Xia, D., Feng, D.D.: Fuzzy C-Means clustering with weighted image patch for image segmentation. Appl. Soft Comput. 12(6), 1659–1667 (2012)
Jiao, Y., Jin, Q., Lu, X., Wang, W.: Alternating direction method of multipliers for linear inverse problems. arXiv preprint arXiv:1601.02773 (2016)
Li, Z., Zheng, J., Zhu, Z., Yao, W., Wu, S.: Weighted guided image filtering. IEEE Trans. Image Process. 24(1), 120–129 (2015)
Ma, L., Staunton, R.C.: A modified Fuzzy C-Means image segmentation algorithm for use with uneven illumination patterns. Pattern Recognit. 40(11), 3005–3011 (2007)
Mitra, S., Kundu, P.P.: Satellite image segmentation with shadowed C-Means. Inform. Sci. 181(17), 3601–3613 (2011)
Mitra, S., Pedrycz, W., Barman, B.: Shadowed C-Means: integrating fuzzy and rough clustering. Pattern Recognit. 43(4), 1282–1291 (2010)
Parikh, N., Boyd, S.P., et al.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014)
Pham, C.C., Ha, S.V.U., Jeon, J.W.: Adaptive guided image filtering for sharpness enhancement and noise reduction. In: Pacific-Rim Symposium on Image and Video Technology, pp. 323–334. Springer (2011)
Sikka, K., Sinha, N., Singh, P.K., Mishra, A.K.: A fully automated algorithm under modified FCM framework for improved brain MR image segmentation. Magn. Reson. Imag. 27(7), 994–1004 (2009)
Sing, J.K., Adhikari, S.K., Basu, D.K.: A modified Fuzzy C-Means algorithm using scale control spatial information for MRI image segmentation in the presence of noise. J. Chemom. 29(9), 492–505 (2015)
Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, 1998. pp. 839–846. IEEE (1998)
Xu, R., Wunsch, D.: Clustering, vol. 10. Wiley, Hoboken (2008)
Yang, J.F., Hao, S.S., Chung, P.C.: Color image segmentation using Fuzzy C-Means and eigenspace projections. Signal Process. 82(3), 461–472 (2002)
Zhang, T., Chen, L., Chen, C.P.: Clustering algorithm based on spatial shadowed Fuzzy C-Means and I-Ching operators. Int. J. Fuzzy Syst. 18(4), 609–617 (2016)
Zhou, J., Chen, C.P., Chen, L., Li, H.X.: A collaborative fuzzy clustering algorithm in distributed network environments. IEEE Trans. Fuzzy Syst. 22(6), 1443–1456 (2014)
Zhou, J., Chen, L., Chen, C.P., Zhang, Y., Li, H.X.: Fuzzy clustering with the entropy of attribute weights. Neurocomputing 198, 125–134 (2016)
Zomet, A., Peleg, S.: Multi-sensor super-resolution. In: Proceedings of Sixth IEEE Workshop on Applications of Computer Vision, 2002. (WACV 2002). pp. 27–31. IEEE (2002)
Acknowledgements
This paper is partially supported by University of Macau RC MYRG2015-00148-FST, Science and Technology Development Fund, Macao S.A.R (067/2014/A, 097/2015/A3) and National Nature Science Foundation of China under Grant No.: 61673405.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Guo, L., Chen, L., Wu, Y. et al. Image Guided Fuzzy C-Means for Image Segmentation. Int. J. Fuzzy Syst. 19, 1660–1669 (2017). https://doi.org/10.1007/s40815-017-0322-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-017-0322-1