Skip to main content
Log in

A Group Decision Making Approach Based on Newly Defined Additively Consistent Interval-Valued Intuitionistic Preference Relations

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Because of the complexity of interval-valued intuitionistic fuzzy set, there are few literatures investigating the additive consistency of the interval-valued intuitionistic preference relation. This paper proposes a group decision making approach with interval-valued intuitionistic preference relations. Firstly, two additive reciprocal fuzzy preference relations and two fuzzy non-preferred relations are obtained by dividing an interval-valued intuitionistic preference relation in order to avoid the operations of interval-valued intuitionistic fuzzy numbers. Here, the fuzzy non-preferred relation is interpreted as the non-preferred intensity of one alternative over another one. Moreover, the rational concept of additive consistency of interval-valued intuitionistic preference relation is defined. Secondly, optimizing models to derive priority weight vector from interval-valued intuitionistic preference relation are constructed. In particular, the priority weight vector is in terms of interval-valued intuitionistic fuzzy numbers, which is rational under the interval-valued intuitionistic fuzzy environment. Thirdly, an extended approach to address group decision making (GDM) problems is proposed. Each individual expert’s consistency index is applied to measure his/her degree of importance. Finally, an illustrative example of supplier selection is provided to illustrate the proposed approach addressing GDM problems. The feasibility to derive priority weight vector in terms of interval-valued intuitionistic fuzzy numbers using the developed approach is verified. And the proposed approach is compared with the other conventional existing ones to show its advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahn, B.S.: The analytic hierarchy process with interval preference statements. Omega 67, 177–185 (2017)

    Article  Google Scholar 

  2. Atanassov, K., Gargov, G.: Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31(3), 343–349 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  MATH  Google Scholar 

  4. Behret, H.: Group decision making with intuitionistic fuzzy preference relations. Knowl. Based Syst. 70, 33–43 (2014)

    Article  Google Scholar 

  5. Chen, S.M., Lin, T.E., Lee, L.W.: Group decision making using incomplete fuzzy preference relations based on the additive consistency and the order consistency. Inf. Sci. 259, 1–15 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, T.Y., Wang, H.P., Lu, Y.Y.: A multicriteria group decision-making approach based on interval-valued intuitionistic fuzzy sets: a comparative perspective. Expert Syst. Appl. 38(6), 7647–7658 (2011)

    Article  Google Scholar 

  7. Chu, J.F., Liu, X.W., Wang, Y.M., Chin, K.S.: A group decision making model considering both the additive consistency and group consensus of intuitionistic fuzzy preference relations. Comput. Ind. Eng. 101, 227–242 (2016)

    Article  Google Scholar 

  8. Dong, Y.C., Li, C.C., Xu, Y.F., Xin, G.: Consensus-based group decision making under multi-granular unbalanced 2-tuple linguistic preference relations. Group Decis. Negot. 24(2), 217–242 (2015)

    Article  Google Scholar 

  9. Dubois, D.: The role of fuzzy sets in decision sciences: old techniques and new directions. Fuzzy Sets Syst. 184(1), 3–28 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dubois, D., Prade, H.: Gradualness, uncertainty and bipolarity: making sense of fuzzy sets. Fuzzy Sets Syst. 192, 3–24 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Entani, T., Sugihara, K.: Uncertainty index based interval assignment by interval ahp. Eur. J. Oper. Res. 219(2), 379–385 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Herrera, F., Martınez, L., Sánchez, P.J.: Managing non-homogeneous information in group decision making. Eur. J. Oper. Res. 166(1), 115–132 (2005)

    Article  MATH  Google Scholar 

  13. Herrera-Viedma, E., García-Lapresta, J.L.: Information fusion in consensus and decision making. Inf. Fus. 17, 2–3 (2014)

    Article  Google Scholar 

  14. Herrera-Viedma, E., Herrera, F., Chiclana, F., Luque, M.: Some issues on consistency of fuzzy preference relations. Eur. J. Oper. Res. 154(1), 98–109 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Herrera-Viedma, E., Martinez, L., Mata, F., Chiclana, F.: A consensus support system model for group decision-making problems with multigranular linguistic preference relations. IEEE Trans. Fuzzy Syst. 13(5), 644–658 (2005)

    Article  Google Scholar 

  16. Jiang, Y., Xu, Z.S., Yu, X.H.: Group decision making based on incomplete intuitionistic multiplicative preference relations. Inf. Sci. 295, 33–52 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Joshi, D., Kumar, S.: Interval-valued intuitionistic hesitant fuzzy choquet integral based topsis method for multi-criteria group decision making. Eur. J. Oper. Res. 248(1), 183–191 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, D.F.: Closeness coefficient based nonlinear programming method for interval-valued intuitionistic fuzzy multiattribute decision making with incomplete preference information. Appl. Soft Comput. 11(4), 3402–3418 (2011)

    Article  Google Scholar 

  19. Li, Z., Xu, J., Lev, B., Gang, J.: Multi-criteria group individual research output evaluation based on context-free grammar judgments with assessing attitude. Omega 57, 282–293 (2015)

    Article  Google Scholar 

  20. Liang, Q., Liao, X.W., Liu, J.P.: A social ties-based approach for group decision-making problems with incomplete additive preference relations. Knowl. Based Syst. 119, 68–86 (2017)

    Article  Google Scholar 

  21. Liu, F.: Acceptable consistency analysis of interval reciprocal comparison matrices. Fuzzy Sets Syst. 160(18), 2686–2700 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, F., Zhang, W.G., Fu, J.H.: A new method of obtaining the priority weights from an interval fuzzy preference relation. Inf. Sci. 185(1), 32–42 (2012a)

    Article  MATH  Google Scholar 

  23. Liu, F., Zhang, W.G., Wang, Z.X.: A goal programming model for incomplete interval multiplicative preference relations and its application in group decision-making. Eur. J. Oper. Res. 218(3), 747–754 (2012b)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, F., Zhang, W.G., Zhang, L.H.: Consistency analysis of triangular fuzzy reciprocal preference relations. Eur. J. Oper. Res. 235(3), 718–726 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, X.W., Pan, Y.W., Xu, Y.J., Yu, S.: Least square completion and inconsistency repair methods for additively consistent fuzzy preference relations. Fuzzy Sets Syst. 198, 1–19 (2012c)

    Article  MathSciNet  MATH  Google Scholar 

  26. Marra, M., Emrouznejad, A., Ho, W., Edwards, J.S.: The value of indirect ties in citation networks: Sna analysis with owa operator weights. Inf. Sci. 314, 135–151 (2015)

    Article  Google Scholar 

  27. Massanet, S., Riera, J.V., Torrens, J., Herrera-Viedma, E.: A model based on subjective linguistic preference relations for group decision making problems. Inf. Sci. 355, 249–264 (2016)

    Article  Google Scholar 

  28. Meng, F., Chen, X.: Interval-valued intuitionistic fuzzy multi-criteria group decision making based on cross entropy and 2-additive measures. Soft. Comput. 19(7), 2071–2082 (2015)

    Article  MATH  Google Scholar 

  29. Meng, F.Y., Chen, X.H., Zhu, M.X., Lin, J.: Two new methods for deriving the priority vector from interval multiplicative preference relations. Inf. Fus. 26, 122–135 (2015)

    Article  Google Scholar 

  30. Merigó, J.M., Casanovas, M., Yang, J.B.: Group decision making with expertons and uncertain generalized probabilistic weighted aggregation operators. Eur. J. Oper. Res. 235(1), 215–224 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, NY, USA (1980)

    MATH  Google Scholar 

  32. Sugihara, K., Ishii, H., Tanaka, H.: Interval priorities in ahp by interval regression analysis. Eur. J. Oper. Res. 158(3), 745–754 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tan, C.Q.: A multi-criteria interval-valued intuitionistic fuzzy group decision making with choquet integral-based topsis. Expert Syst. Appl. 38(4), 3023–3033 (2011). 715ry Times Cited:70 Cited References Count:50

    Article  Google Scholar 

  34. Tanino, T.: Fuzzy preference orderings in group decision making. Fuzzy Sets Syst. 12(2), 117–131 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tanino, T.: Fuzzy Preference Relations in Group Decision Making, Lecture Notes in Economics and Mathematical Systems, vol. 301, pp. 54–71. Springer, Berlin (1988) (book section 4)

  36. Tsao, C.Y., Chen, T.Y., Tsao, C.Y., Chen, T.Y.: A projection-based compromising method for multiple criteria decision analysis with interval-valued intuitionistic fuzzy information. Appl. Soft Comput. 45, 207–223 (2016)

    Article  Google Scholar 

  37. Urena, R., Chiclana, F., Morente-Molinera, J.A., Herrera-Viedma, E.: Managing incomplete preference relations in decision making: a review and future trends. Inf. Sci. 302, 14–32 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, Y.M., Elhag, T.M.: A fuzzy group decision making approach for bridge risk assessment. Comput. Ind. Eng. 53(1), 137–148 (2007a)

    Article  Google Scholar 

  39. Wang, Y.M., Elhag, T.M.: A goal programming method for obtaining interval weights from an interval comparison matrix. Eur. J. Oper. Res. 177(1), 458–471 (2007b)

    Article  MATH  Google Scholar 

  40. Wang, Y.M., Elhag, T.M.S.: On the normalization of interval and fuzzy weights. Fuzzy Sets Syst. 157(18), 2456–2471 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, Y.M., Parkan, C.: Optimal aggregation of fuzzy preference relations with an application to broadband internet service selection. Eur. J. Oper. Res. 187(3), 1476–1486 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, Y.M., Fan, Z.P., Hua, Z.: A chi-square method for obtaining a priority vector from multiplicative and fuzzy preference relations. Eur. J. Oper. Res. 182(1), 356–366 (2007)

    Article  MATH  Google Scholar 

  43. Wang, Z.J., Li, K.W.: Goal programming approaches to deriving interval weights based on interval fuzzy preference relations. Inf. Sci. 193, 180–198 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wang, Z.J., Li, K.W., Wang, W.Z.: An approach to multiattribute decision making with interval-valued intuitionistic fuzzy assessments and incomplete weights. Inf. Sci. 179(17), 3026–3040 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wu, J., Chiclana, F.: Non-dominance and attitudinal prioritisation methods for intuitionistic and interval-valued intuitionistic fuzzy preference relations. Expert Syst. Appl. 39(18), 13409–13416 (2012)

    Article  Google Scholar 

  46. Wu, J., Chiclana, F.: A social network analysis trustconsensus based approach to group decision-making problems with interval-valued fuzzy reciprocal preference relations. Knowl. Based Syst. 59, 97–107 (2014)

    Article  Google Scholar 

  47. Wu, J., Liu, Y.J.: An approach for multiple attribute group decision making problems with interval-valued intuitionistic trapezoidal fuzzy numbers. Comput. Ind. Eng. 66(2), 311–324 (2013)

    Article  Google Scholar 

  48. Wu, Z.B., Xu, J.P.: A consistency and consensus based decision support model for group decision making with multiplicative preference relations. Decis. Support Syst. 52(3), 757–767 (2012)

    Article  Google Scholar 

  49. Wu, Z.B., Xu, J.P.: Managing consistency and consensus in group decision making with hesitant fuzzy linguistic preference relations. Omega 65, 28–40 (2016)

    Article  Google Scholar 

  50. Xia, M.M., Xu, Z.S., Liao, H.C.: Preference relations based on intuitionistic multiplicative information. IEEE Trans. Fuzzy Syst. 21(1), 113–133 (2013)

    Article  Google Scholar 

  51. Xu, J.P., Shen, F.: A new outranking choice method for group decision making under atanassovs interval-valued intuitionistic fuzzy environment. Knowl. Based Syst. 70, 177–188 (2014)

    Article  Google Scholar 

  52. Xu, Y.J., Chen, L., Rodríguez, R.M., Herrera, F., Wang, H.M.: Deriving the priority weights from incomplete hesitant fuzzy preference relations in group decision making. Knowl. Based Syst. 99, 71–78 (2016)

    Article  Google Scholar 

  53. Xu, Z.S.: Intuitionistic preference relations and their application in group decision making. Inf. Sci. 177(11), 2363–2379 (2007a)

    Article  MathSciNet  MATH  Google Scholar 

  54. Xu, Z.S.: Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making. Control Decis. 22, 215–219 (2007b)

    Google Scholar 

  55. Xu, Z.S.: A method based on distance measure for interval-valued intuitionistic fuzzy group decision making. Inf. Sci. 180(1), 181–190 (2010)

    Article  MATH  Google Scholar 

  56. Xu, Z.S., Cai, X.Q.: Group decision making with incomplete interval-valued intuitionistic preference relations. Group Decis. Negot. 24(2), 193–215 (2015)

    Article  Google Scholar 

  57. Xu, Z.S., Chen, J.: Approach to group decision making based on interval-valued intuitionistic judgment matrices. Syst. Eng. Theory Pract. 27(4), 126–133 (2007)

    Article  MathSciNet  Google Scholar 

  58. Xu, Z.S., Yager, R.: Intuitionistic and interval-valued intutionistic fuzzy preference relations and their measures of similarity for the evaluation of agreement within a group. Fuzzy Optim. Decis. Mak. 8(2), 123–139 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zadeh, L.A.: fuzzy sets. Inf. Control 8(338), 353 (1965)

    MATH  Google Scholar 

  60. Zhang, F., Xu, S.: Multiple attribute group decision making method based on utility theory under interval-valued intuitionistic fuzzy environment. Group Decis. Negot. 25(6), 1261–1275 (2016)

    Article  Google Scholar 

  61. Zhang, Q., Jiang, S.Y., Jia, B.G., Luo, S.H.: Some information measures for interval-valued intuitionistic fuzzy sets. Inf. Sci. 180(24), 5130–5145 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zhang, Z.M.: Logarithmic least squares approaches to deriving interval weights, rectifying inconsistency and estimating missing values for interval multiplicative preference relations. Soft Comput. 21(14), 3993–4004 (2017)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the editors. This work was supported by the Scientific Research and Innovation Project for College Graduates of Jiangsu Province (KYLX-0209), National Natural Science Foundation of China (NSFC) (71371049 and 71371053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwang Liu.

Appendix

Appendix

The Procedure of Constructing Model (34)

We can also introduce the following deviation variables to gauge the difference similarly to Eqs. (17) and (18).

$$\begin{aligned} {{\varepsilon _{ij,D}}}= & {} {d_{ij}} - 0.5\left( {{{\omega _{i,D}}} - {{\omega _{j,D}}}} \right) - 0.5,\ i,j = 1,2, \ldots ,n,\;i \ne j \end{aligned}$$
(48)
$$\begin{aligned} {{\varepsilon _{ij,E}}}= & {} {e_{ij}} - 0.5\left( {{{\omega _{i,E}}} - {{\omega _{j,E}}}} \right) - 0.5,\ i,j = 1,2, \ldots ,n,\;i \ne j \end{aligned}$$
(49)

We can construct the following optimization model to obtain the optimal interval weight vector in the same way as shown in Eq. (19).

$$\begin{aligned} \begin{array}{l} \min \;{J_2} = \sum \limits _{i = 1}^n {\sum \limits _{j = 1}^n {\left( {\left| {{{\varepsilon _{ij,D}}}} \right| + \left| {{{\varepsilon _{ij,E}}}} \right| } \right) } } \\ {\mathrm{s.t.}}\;\left\{ \begin{array}{l} {{\varepsilon _{ij,D}}} - {d_{ij}} + 0.5\left( {{{\omega _{i,D}}} - {{\omega _{j,D}}}} \right) + 0.5 = 0, \quad i,j = 1,2, \ldots ,n,\;i \ne j\\ {{\varepsilon _{ij,E}}} - {e_{ij}} + 0.5\left( {{{\omega _{i,E}}} - {{\omega _{j,E}}}} \right) + 0.5 = 0, \quad i,j = 1,2, \ldots ,n,\;i \ne j\\ 0 \le {{\omega _{i,D}}} \le 1,\;0 \le {{\omega _{i,E}}} \le 1,\quad i = 1,2, \ldots ,n\\ \sum \limits _{i = 1}^n {{\omega _{i,R}^L} } + \mathop {\max }\limits _j \left( {{\omega _{i,R}^U} - {\omega _{i,R}^L} } \right) \le 1, \quad j = 1,2, \ldots ,n\\ \sum \limits _{i = 1}^n {{\omega _{i,R}^U} } - \mathop {\max }\limits _j \left( {{\omega _{i,R}^U} - {\omega _{i,R}^L} } \right) \ge 1, \quad j = 1,2, \ldots ,n \end{array} \right. \end{array} \end{aligned}$$
(50)

where, \({\omega _{i,R}^L} = \min \left\{ {{{\omega _{i,D}}},\;{{\omega _{i,E}}}\;} \right\}\) and \({\omega _{i,R}^U} = \max \left\{ {{{\omega _{i,D}}},\;\;{{\omega _{i,E}}}\;} \right\}\) .

We introduce the following variables by the same method as employed above.

$$\begin{aligned} { \varepsilon _{ij,D}^ + } =\frac{{\left| {{{\varepsilon _{ij,D}}}} \right| + {{\varepsilon _{ij,D}}}}}{2}\ \ \text {and}\ \ {\varepsilon _{ij,D}^ - } = \dfrac{{\left| {{{\varepsilon _{ij,D}}}} \right| - {{\varepsilon _{ij,D}}}}}{2},\ i = 1,2, \ldots ,n,\;j = i + 1, \ldots ,n \end{aligned}$$
(51)
$$\begin{aligned} { \varepsilon _{ij,E}^ + } =\frac{{\left| {{{\varepsilon _{ij,E}}}} \right| + {{\varepsilon _{ij,E}}}}}{2},\ \ \text {and}\ \ {\varepsilon _{ij,E}^ - } = \frac{{\left| {{{\varepsilon _{ij,E}}}} \right| - {{\varepsilon _{ij,E}}}}}{2},\ \ i = 1,2, \ldots ,n,\;j = i + 1, \ldots ,n \end{aligned}$$
(52)

Then, we have

$$\begin{aligned} {{\varepsilon _{ij,D}}} = { \varepsilon _{ij,D}^ + } - {\varepsilon _{ij,D}^ - },\ \left| {{{\varepsilon _{ij,D}}}} \right| = { \varepsilon _{ij,D}^ + } + {\varepsilon _{ij,D}^ - },\ i = 1,2, \ldots ,n,\;j = i + 1, \ldots ,n \end{aligned}$$
(53)

where \({ \varepsilon _{ij,D}^ + } \cdot {\varepsilon _{ij,D}^ - } = 0\) for \(i = 1,2, \ldots ,n,\;j = i + 1, \ldots ,n\) .

Similarly, \({ \varepsilon _{ij,E}^ + }\) and \(\left| {{{\varepsilon _{ij,E}}}} \right|\) can be expressed as

$$\begin{aligned} {{\varepsilon _{ij,E}}} = { \varepsilon _{ij,E}^ + } - {\varepsilon _{ij,E}^ - },\ \left| {{{\varepsilon _{ij,E}}}} \right| = { \varepsilon _{ij,E}^ + } + {\varepsilon _{ij,E}^ - },\ i = 1,2, \ldots ,n,\;j = i + 1, \ldots ,n \end{aligned}$$
(54)

where \({ \varepsilon _{ij,E}^ + } \cdot {\varepsilon _{ij,E}^ - } = 0\) for \(i = 1,2, \ldots ,n,\;j = i + 1, \ldots ,n\) .

The same to Eqs. (23) and (23), we have

$$\begin{aligned} {\omega _{i,R}^L}= & {} \min \left\{ {{{\omega _{i,D}}},\;{{\omega _{i,E}}}\;} \right\} = \frac{{\left( {{{\omega _{i,D}}} + {{\omega _{i,E}}}} \right) - \left| {{{\omega _{i,D}}} - {{\omega _{i,E}}}} \right| }}{2} \end{aligned}$$
(55)
$$\begin{aligned} {\omega _{i,R}^U}= & {} \max \left\{ {{{\omega _{i,D}}},\;\;{{\omega _{i,E}}}\;} \right\} = \frac{{\left( {{{\omega _{i,D}}} + {{\omega _{i,E}}}} \right) + \left| {{{\omega _{i,D}}} - {{\omega _{i,E}}}} \right| }}{2} \end{aligned}$$
(56)

Consequently, the model (50) can be transformed into model (34).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, J., Liu, X., Wang, L. et al. A Group Decision Making Approach Based on Newly Defined Additively Consistent Interval-Valued Intuitionistic Preference Relations. Int. J. Fuzzy Syst. 20, 1027–1046 (2018). https://doi.org/10.1007/s40815-017-0353-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0353-7

Keywords

Navigation