Skip to main content
Log in

Adaptive Fuzzy Sliding Mode Diving Control for Autonomous Underwater Vehicle with Input Constraint

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper develops a novel adaptive fuzzy sliding mode controller for the diving control of autonomous underwater vehicle (AUV). Unlike most previous AUVs’ control approaches, in this paper, the problem of input saturation constraint of rudder angle is considered, and the new auxiliary systems are proposed. Considering the modeling uncertainty of the dynamic model, an adaptive sliding mode controller based on fuzzy logic system is proposed, and the new update laws of control parameters are given. For the adaptive sliding mode controller design, although the input gain of each subsystem is partially known, only one fuzzy logic system is needed for online identification, which is a distinct difference from the previous adaptive sliding mode controllers. The uniformly ultimately boundedness of tracking error is proven by Lyapunov theorem. The effectiveness of the proposed control scheme is illustrated by simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Xiang, X., Yu, C., Niu, Z., et al.: Subsea cable tracking by autonomous underwater vehicle with magnetic sensing guidance. Sensors 16(8), 1335 (2016)

    Article  Google Scholar 

  2. Wang, N., Sun, J.C., Meng, J.E., et al.: A Novel Extreme Learning Control Framework of Unmanned Surface Vehicles. IEEE Trans. Cybern. 46, 1106–1117 (2016)

    Article  Google Scholar 

  3. Xiang, X., Yu, C., Zhang, Q.: On intelligent risk analysis and critical decision of underwater robotic vehicle. Ocean Eng. 140, 453–465 (2017)

    Article  Google Scholar 

  4. Xiang, X., Lapierre, L., Jouvencel, B.: Smooth transition of auv motion control: From fully-actuated to under-actuated configuration. Robot. Auton. Syst. 67, 14–22 (2015)

    Google Scholar 

  5. Kim, D.W.: Tracking of REMUS autonomous underwater vehicles with actuator saturations. Automatica 58, 15–21 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Xiang, X., Liu, C., Su, H., et al.: On decentralized adaptive full-order sliding mode control of multiple uavs. ISA Trans. (2017). doi:10.1016/j.isatra.2017.09.008

    Google Scholar 

  7. Wang, N., Su, S.F., Yin, J., et al.: Global asymptotic model-free trajectory-independent tracking control of an uncertain marine vehicle: An adaptive universe-based fuzzy control approach. IEEE Trans. Fuzzy Syst. (2017). doi:10.1109/TFUZZ.2017.2737405

    Google Scholar 

  8. Zhang, M.J., Chu, Z.Z.: Adaptive sliding mode control based on local recurrent neural networks for underwater robot. Ocean Eng. 45, 56–62 (2012)

    Article  Google Scholar 

  9. Chu, Z., Zhu, D., Yang, S.X.: Observer-based adaptive neural network trajectory tracking control for remotely operated vehicle. IEEE Trans. Neural Netw. Learn. Syst. 28, 1633–1645 (2017)

    Article  MathSciNet  Google Scholar 

  10. Wang, N., Qian, C., Sun, J.C., et al.: Adaptive robust finite-time trajectory tracking control of fully actuated marine surface vehicles. IEEE Trans. Control Syst. Technol. 24, 1454–1462 (2016)

    Article  Google Scholar 

  11. Mukund, N., Sahjendra, N.S.: Adaptive optimal control of an autonomous underwater vehicle in the dive plane using dorsal fins. Ocean Eng. 33, 404–416 (2006)

    Article  Google Scholar 

  12. Shen, Y., Shao, K., Ren, W., et al.: Diving control of autonomous underwater vehicle based on improved active disturbance rejection control approach. Neurocomputing 173, 1377–1385 (2016)

    Article  Google Scholar 

  13. Wang, N., Sun, J.C., Er, M.J.: Tracking-error-based universal adaptive fuzzy control for output tracking of nonlinear systems with completely unknown dynamics. IEEE Trans. Fuzzy Syst. (2017). doi:10.1109/TFUZZ.2017.2697399

    Google Scholar 

  14. Wang, N., Meng, J.E., Sun, J.C., et al.: Adaptive robust online constructive fuzzy control of a complex surface vehicle system. IEEE Trans. Cybern. 46, 1511–1523 (2016)

    Article  Google Scholar 

  15. Cui, R., Yang, C., Li, Y., et al.: Adaptive neural network control of AUVs with control input nonlinearities using reinforcement learning. IEEE Trans. Syst. Man Cybern. Syst. 47, 1019–1029 (2017)

    Article  Google Scholar 

  16. Cui, R., Zhang, X., Cui, D.: Adaptive sliding mode attitude control for autonomous underwater vehicles with input nonlinearities. Ocean Eng. 123, 45–54 (2016)

    Article  Google Scholar 

  17. Wang, N., Sun, J.C., Han, M., et al.: Adaptive approximation-based regulation control for a class of uncertain nonlinear systems without feedback linearizability. IEEE Trans. Neural Netw. Learn. Syst (2017). doi:10.1109/TNNLS.2017.2738918

    Google Scholar 

  18. Shojaei, K.: Neural adaptive robust control of underactuated marine surface vehicles with input saturation. Appl. Ocean Res. 53, 267–278 (2015)

    Article  Google Scholar 

  19. Chen, M., Zhou, Y., Guo, W.W.: Robust tracking control for uncertain MIMO nonlinear systems with input saturation using RWNNDO. Neurocomputing 144, 436–447 (2014)

    Article  Google Scholar 

  20. Zhong, Y.S.: Globally stable adaptive system design for minimum phase SISO plants with input saturation. Automatica 41, 1539–1547 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, M., Yu, J.: Adaptive dynamic surface control of NSVs with input saturation using a disturbance observer. Chin. J. Aeronaut. 28, 853–864 (2015)

    Article  Google Scholar 

  22. Li, Y., Tong, S.: T. Li: Adaptive fuzzy output-feedback control for output constrained nonlinear systems in the presence of input saturation. Fuzzy Sets Syst. 248, 138–155 (2014)

    Article  MATH  Google Scholar 

  23. Gao, S., Dong, H., Ning, B., Chen, L.: Neural adaptive control for uncertain nonlinear system with input saturation: state transformation based output feedback. Neurocomputing 159, 117–125 (2015)

    Article  Google Scholar 

  24. Man, Z., Wu, H.R., Palaniswami, M.: An adaptive tracking controller using neural networks for a class of nonlinear systems. IEEE Trans. Neural Netw. 9, 947–955 (1998)

    Article  Google Scholar 

  25. Wai, R.J., Kuo, M.A., Lee, J.D.: Design of cascade adaptive fuzzy sliding-mode control for nonlinear two-axis inverted-pendulum servomechanism. IEEE Trans. Fuzzy Syst. 16, 1232–1244 (2008)

    Article  Google Scholar 

  26. Engeberg, E.D., Meek, S.G.: Adaptive sliding mode control for prosthetic hands to simultaneously prevent slip and minimize deformation of grasped objects. IEEE/ASME Trans. Mechatron. 18, 376–385 (2013)

    Article  Google Scholar 

  27. Morales, R., Feliu, V., Sira-Ramirez, H.: Nonlinear control for magnetic levitation systems based on fast online algebraic identification of the input gain. IEEE Trans. Control Syst. Technol. 19, 757–771 (2011)

    Article  MATH  Google Scholar 

  28. Du, H., Ge, S.S.: Output feedback adaptive neural control for a class of non-affine non-linear systems with a dynamic gain observer. IET Control Theory Appl. 5, 486–497 (2011)

    Article  MathSciNet  Google Scholar 

  29. Nguyen T.V.M., Nguyen H.T., Ha Q.P.: Sliding mode neural controller for nonlinear systems with higher-order and uncertainties. In Proceedings of the 2004 IEEE Conference on Robotics, Automation and Mechatronics, Singapore, pp. 1026–1030 (2004)

  30. Tombul, G.S., Banks, S.P., Akturk, N.: Sliding mode control for a class of non-affine nonlinear systems. Nonlinear Anal. Theory Method Appl. 71, 1589–1597 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ho, H.F., Wong, Y.K., Rad, A.B.: Adaptive fuzzy sliding mode control with chattering elimination for nonlinear SISO systems. Simul. Model. Pract. Theory 17, 1199–1210 (2009)

    Article  Google Scholar 

  32. Xiang, X., Yu, C., Zhang, Q.: Robust fuzzy 3D path following for autonomous underwater vehicle subject to uncertainties. Comput. Oper. Res. 84, 165–177 (2017)

    Article  MathSciNet  Google Scholar 

  33. Li, J.H., Lee, P.M.: A neural network adaptive controller design for free-pitch-angle diving behavior of an autonomous underwater vehicle. Robot Auton. Syst. 52, 132–147 (2005)

    Article  Google Scholar 

  34. Yin, J., Wang, N., Perakis, A.N.: A real-time sequential ship roll prediction scheme based on adaptive sliding data window. IEEE Trans. Syst. Man Cybern. Syst. (2017). doi:10.1109/TSMC.2017.2735995

    Google Scholar 

  35. Wang, J., Rad, A.B., Chan, P.T.: Indirect adaptive fuzzy sliding mode control Part I: fuzzy switching. Fuzzy Sets Syst. 122, 21–30 (2001)

    Article  MATH  Google Scholar 

  36. Wang, N., Er, M.J.: Direct Adaptive fuzzy tracking control of marine vehicles with fully unknown parametric dynamics and uncertainties. IEEE Trans. Control Syst. Technol. 24, 1845–1852 (2016)

    Article  Google Scholar 

  37. Xiao, B., Hu, Q., Zhang, Y.: Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation. IEEE Trans. Control Syst. Technol. 20, 1605–1812 (2012)

    Article  Google Scholar 

  38. Tong, S.C., Li, Y.M., Feng, G., Li, T.S.: Observer-based adaptive fuzzy backstepping dynamic surface control for a class of MIMO nonlinear systems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 41, 1124–1135 (2011)

    Article  Google Scholar 

  39. Xu, F., Zou, Z.J., Yin, J.C., Cao, J.: Parametric identification and sensitivity analysis for autonomous underwater vehicles in diving plane. J. Hydrodyn. 24, 744–751 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China under Grant 51509150, 51575336; Shanghai Municipal Natural Science Foundation under Grant 15ZR1419700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianbo Xiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, Z., Xiang, X., Zhu, D. et al. Adaptive Fuzzy Sliding Mode Diving Control for Autonomous Underwater Vehicle with Input Constraint. Int. J. Fuzzy Syst. 20, 1460–1469 (2018). https://doi.org/10.1007/s40815-017-0390-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0390-2

Keywords