Skip to main content
Log in

Fuzzy Optimization for Multi-item Supply Chain with Trade Credit and Two-Level Price Discount Under Promotional Cost Sharing

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Here, a multi-item two-level supply chain is considered where supplier offers a cash discount and a credit period to its retailer to boost the demand of the items. Due to this facility, retailer also offers a cash discount to its customers to increase the base demand of the items. Retailer also introduces some promotional costs to boost the base demand of the items. It is established theoretically that if the supplier shares a part of the promotional cost then the channel profit as well as the individual profit increase. It is also established that the cash discount given to the customers has sufficient significance in a supply chain. The supply chain model is also considered in imprecise environment when different inventory costs are fuzzy in nature. In this case, individual profits as well as channel profit become fuzzy in nature. As optimization of fuzzy objective is not well defined, following credibility measure of fuzzy event, an approach is followed for comparison of fuzzy objectives and a particle swarm optimization algorithm is used to find marketing decisions. In another approach graded mean integration values of the fuzzy objectives are optimized to find marketing decisions. Models are illustrated with numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bera, U.K., Maiti, M.K., Maiti, M.: Inventory model with fuzzy lead-time and dynamic demand over finite time horizon using a multi-objective genetic algorithm. Comput. Math. Appl. 64, 1822–1838 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cárdenas-Barrón, L.E., Sana, S.S.: Multi-item EOQ inventory model in a two-layer supply chain while demand varies with promotional effort. Appl. Math. Model. 39(21), 6725–6737 (2015)

    Article  MathSciNet  Google Scholar 

  3. Guchhait, P., Maiti, M.K., Maiti, M.: A production inventory model with fuzzy production and demand using fuzzy differential equation: an interval compared genetic algorithm approach. Eng. Appl. Artif. Intell. 26, 766–778 (2013)

    Article  Google Scholar 

  4. Huang, D., Ouyang, L.Q., Zhou, H.: Note on: managing multi-echelon multi-item channels with trade allowances under credit period. Int. J. Prod. Econ. 138, 117–124 (2012)

    Article  Google Scholar 

  5. Huang, K.-L., Kuo, C.-W., Lu, M.-L.: Wholesale price rebate versus capacity expansion: the optimal strategy for seasonal products in a supply chain. Eur. J. Oper. Res. 234, 77–85 (2014)

    Article  MATH  Google Scholar 

  6. Jaggi, C.K., Tiwari, S., Goel, S.K.: Credit financing in economic ordering policies for non-instantaneous deteriorating items with price dependent demand and two storage facilities. Ann. Oper. Res. 248, 253–280 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jitender, K., Parteek, S.V.: Analysis of vendor managed inventory system element using ANOVA method: a case study. Int. J. All Res. Educ. Sci. Methods 4(7), 16–24 (2016)

    Google Scholar 

  8. Krishnan, H., Kapuscinski, R., Butz, D.A.: Coordinating contracts for decentralized supply chains with retailer promotional effort. Manag. Sci. 50(1), 48–63 (2004)

    Article  Google Scholar 

  9. Kundu, A., Guchhait, P., Pramanik, P., Maiti, M.K., Maiti, M.: A production inventory model with price discounted fuzzy demand using an interval compared hybrid algorithm. Swarm Evol. Comput. 34, 1–17 (2017)

    Article  Google Scholar 

  10. Liu, B.: Uncertainty Theory: An Introduction to its Axiomatic Foundations. Springer, New York (2004)

    Book  MATH  Google Scholar 

  11. Maiti, M.K., Maiti, M.: Two storage inventory model in a mixed environment. Fuzzy Optim. Decis. Mak. 6, 391–426 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pal, S., Maiti, M.K., Maiti, M.: An EPQ model with price discounted promotional demand in an imprecise planning horizon via Genetic algorithm. Comput. Ind. Eng. 57, 181–187 (2009)

    Article  Google Scholar 

  13. Pal, B., Sana, S.S., Chaudhuri, K.: Two-echelon competitive integrated supply chain model with price and credit period dependent demand. Int. J. Syst. Sci. 47, 995–1007 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pramanik, P., Maiti, M.K., Maiti, M.: Three level partial trade credit with promotional cost sharing. Appl. Soft Comput. 58, 553–575 (2017a)

    Article  Google Scholar 

  15. Pramanik, P., Maiti, M.K., Maiti, M.: A supply chain with variable demand under three level trade credit policy. Comput. Ind. Eng. 106, 205–221 (2017b)

    Article  Google Scholar 

  16. Qin, Y., Tang, H., Guo, C.: Channel coordination and volume discounts with price-sensitive demand. Int. J. Prod. Econ. 105, 43–53 (2007)

    Article  Google Scholar 

  17. Tsao, Y.-C.: Managing multi-echelon multi-item channels with trade allowances under credit period. Int. J. Prod. Econ. 127, 226–237 (2010)

    Article  Google Scholar 

  18. Wang, Q.: Discount pricing policies and the coordination of decentralized distribution systems. Decis. Sci. 36(4), 627–646 (2005)

    Article  Google Scholar 

  19. Xie, J., Neyret, A.: Co-op advertising and pricing models in manufacturer-retailer supply chains. Comput. Ind. Eng. 56, 1375–1385 (2009)

    Article  Google Scholar 

  20. Xie, J., Wei, J.C.: Coordinating advertising and pricing in a manufacturer-retailer channel. Eur. J. Oper. Res. 197, 785–791 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yue, J., Austin, J., Huang, Z., Chen, B.: Pricing and advertisement in a manufacturer-retailer supply chain. Eur. J. Oper. Res. 231, 492–502 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilesh Pakhira.

Appendix

Appendix

Proof

(Lemma 1) The Hessian matrix for \(\Pi _\mathrm{R}\) is

$$\begin{aligned} D_{n+2}= \begin{bmatrix} \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{1}^{2}}&0&\cdots&0&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{1}\partial T}&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{1}\partial f_\mathrm{R}} \\ 0&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{2}^{2}}&\cdots&0&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{2}\partial T}&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{2}\partial f_\mathrm{R}} \\ \vdots&\vdots&\vdots&\vdots&\vdots \\ 0&0&\cdots&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{n}^{2}}&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{n}\partial T}&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{n}\partial f_\mathrm{R}} \\ \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial T\partial \rho _{1}}&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial T\partial \rho _{2}}&\cdots&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial T\partial \rho _{n}}&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial T^{2}}&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial T\partial f_\mathrm{R}} \\ \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial f_\mathrm{R}\partial \rho _{1}}&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial f_\mathrm{R}\partial \rho _{2}}&\cdots&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial f_\mathrm{R}\partial \rho _{n}}&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial f_\mathrm{R}\partial T}&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial f_\mathrm{R}^{2}} \end{bmatrix} \end{aligned}$$

Since \(\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{i}^{2}}<0\) for \(i=1,2,\ldots ,n\), so \((-1)^{i}.|D_{i}|>0\) for \(i=1,2,\ldots ,n\). If \((-\,1)^{i}.|D_{i}|>0\) for \(i=n+1\) and \(i=n+2\), then there must be a solution of the given set of equations to maximize \(\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})\).

Multiplying each element in each row i, \((i=1,2,\ldots ,n)\) of \(D_{n+2}\) by \(-\,\left( \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial T \partial \rho _{i}}\big /\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{i}^{2}} \right) \) and adding it to the corresponding element in \((n+1)\)th row, the above matrix becomes

$$\begin{aligned} D_{n+2}= \begin{bmatrix} \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{1}^{2}}&0&\cdots&0&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{1}\partial T}&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{1}\partial f_\mathrm{R}} \\ 0&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{2}^{2}}&\cdots&0&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{2}\partial T}&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{2}\partial f_\mathrm{R}} \\ \vdots&\vdots&\vdots&\vdots&\vdots \\ 0&0&\cdots&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{n}^{2}}&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{n}\partial T}&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{n}\partial f_\mathrm{R}} \\ 0&0&\cdots&0&V_\mathrm{R}&V_\mathrm{R}' \\ \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial f_\mathrm{R}\partial \rho _{1}}&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial f_\mathrm{R}\partial \rho _{2}}&\cdots&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial f_\mathrm{R}\partial \rho _{n}}&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial f_\mathrm{R}\partial T}&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial f_\mathrm{R}^{2}} \end{bmatrix} \end{aligned}$$
$$\begin{aligned} \text{ where } \,\, V_\mathrm{R}&= \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial T^{2}} -\sum \limits _{i=1}^{n} \left[ \left( \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{i}\partial T} \right) ^{2} \bigg / \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{i}^{2}} \right] \\&= -\,\frac{2\left[ A_\mathrm{R}+\sum \nolimits _{i=1}^{n}a_{R,i} \right] }{T^3} - \sum \limits _{i=1}^{n} (1-f_\mathrm{S})w_{i}(I_{p}-I_{e})\frac{\rho _{i}'\xi _{i}}{T^{3}}t_\mathrm{S}^{2} \\&+\, \sum \limits _{i=1}^{n} \left[ \left\{ -\frac{\xi _{i}}{2}\{h_{R,i}+(1-f_\mathrm{S})w_{i}I_{p}\} + (1-f_\mathrm{S})w_{i}(I_{p}-I_{e})\frac{\xi _{i}t_\mathrm{S}^{2}}{2T^{2}}\right\} ^{2} \bigg /2K_{i}\xi _{i}^{\alpha _{i}} \right] \\ \text{ and } \,\, V_\mathrm{R}'&= \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial T\partial f_\mathrm{R}} -\sum \limits _{i=1}^{n} \left[ \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{i}\partial f_\mathrm{R}}. \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{i}\partial T} \bigg / \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{i}^{2}} \right] \\&= -\sum \limits _{i=1}^{n} \frac{\lambda \xi _{i}}{2} \left\{ h_{R,i}+(1-f_\mathrm{S})w_{i}I_{p}\right\} +\sum \limits _{i=1}^{n} (1-f_\mathrm{S})w_{i}(I_{p}-I_{e}) \frac{\lambda \xi _{i}t_\mathrm{S}^{2}}{2T^{2}} \\&+\sum \limits _{i=1}^{n} \left[ \left\{ \frac{r_{i}\xi _{i}^{2}}{2}\{h_{R,i}+(1-f_\mathrm{S})w_{i}I_{p}\} - (1-f_\mathrm{S})w_{i}(I_{p}-I_{e})\frac{r_{i}\xi _{i}^{2}t_\mathrm{S}^{2}}{2T^{2}} \right\} \bigg /2K_{i}\xi _{i}^{\alpha _{i}} \right] \\ \end{aligned}$$

Now, multiplying each element in each column i, \((i=1,2,\ldots ,n)\) of \(D_{n+2}\) by \(-\left( \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{i}\partial T} \big /\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{i}^{2}} \right) \) and adding it to the corresponding element in \((n+1)\)th column, the matrix reduces to

$$\begin{aligned} D_{n+2}= \begin{bmatrix} \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{1}^{2}}&0&\cdots&0&0&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{1}\partial f_\mathrm{R}} \\ 0&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{2}^{2}}&\cdots&0&0&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{2}\partial f_\mathrm{R}} \\ \vdots&\vdots&\vdots&\vdots&\vdots \\ 0&0&\cdots&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{n}^{2}}&0&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{n}\partial f_\mathrm{R}} \\ 0&0&\cdots&0&V_\mathrm{R}&V_\mathrm{R}' \\ \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial f_\mathrm{R}\partial \rho _{1}}&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial f_\mathrm{R}\partial \rho _{2}}&\cdots&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial f_\mathrm{R}\partial \rho _{n}}&W_\mathrm{R}'&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial f_\mathrm{R}^{2}} \end{bmatrix} \end{aligned}$$
$$\begin{aligned} \text{ where } \,\,W_\mathrm{R}'&= \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial T\partial f_\mathrm{R}} -\sum \limits _{i=1}^{n} \left[ \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{i}\partial f_\mathrm{R}}. \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{i}\partial T} \bigg / \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{i}^{2}} \right] \\&= V_\mathrm{R}'. \end{aligned}$$

Now, multiplying each element in each row i, \((i=1,2,\ldots ,n)\) of \(D_{n+2}\) by \(-\left( \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial f_\mathrm{R}\partial \rho _{i}} \big / \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{i}^{2}} \right) \) and in \((n+1)th\) row by \(-(W_\mathrm{R}'/V_\mathrm{R})\) and adding it to the corresponding element in \((n+2)\)th row, the following matrix is obtained

$$\begin{aligned} D_{n+2}= \begin{bmatrix} \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{1}^{2}}&0&\cdots&0&0&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{1}\partial f_\mathrm{R}} \\ 0&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{2}^{2}}&\cdots&0&0&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{2}\partial f_\mathrm{R}} \\ \vdots&\vdots&\vdots&\vdots&\vdots \\ 0&0&\cdots&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{n}^{2}}&0&\frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{n}\partial f_\mathrm{R}} \\ 0&0&\cdots&0&V_\mathrm{R}&V_\mathrm{R}' \\ 0&0&\cdots&0&0&W_\mathrm{R} \end{bmatrix} \end{aligned}$$
$$\begin{aligned} \text{ where } \,\,W_\mathrm{R}&= \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial f_\mathrm{R}^{2}} -\sum \limits _{i=1}^{n} \left[ \left( \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{i}\partial f_\mathrm{R}} \right) ^{2} \bigg / \frac{\partial ^{2}\Pi _\mathrm{R}(\rho _{i},T,f_\mathrm{R})}{\partial \rho _{i}^{2}} \right] -\frac{V_\mathrm{R}'\times W_\mathrm{R}'}{V_\mathrm{R}} \\&= -\sum \limits _{i=1}^{n} 2\lambda r_{i}\xi _{i} +\sum \limits _{i=1}^{n} \left[ r_{i}^{2}\xi _{i}^{2} \bigg /2K_{i}\xi _{i}^{\alpha _{i}} \right] - \frac{V_\mathrm{R}'\times W_\mathrm{R}'}{V_\mathrm{R}}. \end{aligned}$$

Hence, the required condition is proved. \(\square \)

Proof

(Proposition 1)

  1. (a)

    From

    $$\begin{aligned}&\Pi _\mathrm{R}^{F}\left( \rho _{i}^{l},T^{l},f_\mathrm{R}^{l}\right) -\Pi _\mathrm{R} \ge 0 \\\Rightarrow & {} - \frac{A_\mathrm{R}}{T^{l}} + \sum \limits _{i=1}^{n} \left[ \left\{ (1-f_\mathrm{R})r_{i}-(1-f_\mathrm{S})w_{i}\right\} \rho _{i}''\xi _{i} - \frac{a_{R,i}}{T^{l}} -(1-F)K_{i}(\rho _{i}^{l}-1)^2\xi _{i}^{\alpha _{i}}\right. \nonumber \\&\left. -\frac{\rho _{i}''\xi _{i}T^{l}}{2}h_{R,i} -(1-f_\mathrm{S})w_{i}I_{p}\frac{\rho _{i}''\xi _{i}}{2T^{l}}(T^{l}-t_\mathrm{S})^{2} +(1-f_\mathrm{S})w_{i}I_{e}\frac{\rho _{i}''\xi _{i}}{2T^{l}}t_\mathrm{S}^{2} \right] \ge \Pi _\mathrm{R} \\&\text{ where }, \rho _{i}''=\rho _{i}^{l}+\lambda f_\mathrm{R}^{l}. \\\Rightarrow & {} F \ge \left\{ \Pi _\mathrm{R} + \frac{A_\mathrm{R}}{T^{l}} - \sum \limits _{i=1}^{n} \left[ \left\{ (1-f_\mathrm{R})r_{i}-(1-f_\mathrm{S})w_{i}\right\} \rho _{i}''\xi _{i} -\frac{a_{R,i}}{T^{l}} - \frac{\rho _{i}''\xi _{i}T^{l}}{2}h_{R,i}\right. \right. \nonumber \\&-\left. \left. K_{i}(\rho _{i}^{l}-1)^2\xi _{i}^{\alpha _{i}} -(1-f_\mathrm{S})w_{i}I_{p}\frac{\rho _{i}''\xi _{i}}{2T^{l}}(T^{l}-t_\mathrm{S})^{2} +(1-f_\mathrm{S})w_{i}I_{e}\frac{\rho _{i}''\xi _{i}}{2T^{l}}t_\mathrm{S}^{2} \right] \right\} \nonumber \\&\bigg / \sum \limits _{i=1}^{n}K_{i}(\rho _{i}^{l}-1)^2\xi _{i}^{\alpha _{i}} \\ \end{aligned}$$

    Therefore, \(F_\mathrm{min}\) is obtained. Also from \(\Pi _\mathrm{S}^{F}(\rho _{i}^{l},T^{l},f_\mathrm{R}^{l})-\Pi _\mathrm{S} \ge 0\), \(F_\mathrm{max}\) can be obtain.

  2. (b)

    The following relations are found from (a):

    $$\begin{aligned} F_\mathrm{max}-F&= \left[ \Pi _\mathrm{S}^{F}(\rho _{i}^{l},T^{l},f_\mathrm{R}^{l})-\Pi _\mathrm{S} \right] \bigg /\sum \limits _{i=1}^{n}K_{i}(\rho _{i}^{l}-1)^2\xi _{i}^{\alpha _{i}} \\ \Rightarrow \bigtriangleup \Pi _\mathrm{S}^{F}&= (F_\mathrm{max}-F)\sum \limits _{i=1}^{n}K_{i}(\rho _{i}^{l}-1)^2\xi _{i}^{\alpha _{i}} \\ \text{ Similarly, } \,\, \bigtriangleup \Pi _\mathrm{R}^{F}&= (F-F_\mathrm{min})\sum \limits _{i=1}^{n}K_{i}(\rho _{i}^{l}-1)^2\xi _{i}^{\alpha _{i}} \end{aligned}$$

    Now, \(\bigtriangleup \Pi _\mathrm{S}^{F}(F) \times \bigtriangleup \Pi _\mathrm{R}^{F}(F)\)

    $$\begin{aligned}&= \left[ (F_\mathrm{max}-F)\sum \limits _{i=1}^{n}K_{i}(\rho _{i}^{l}-1)^2\xi _{i}^{\alpha _{i}} \right] \times \left[ (F-F_\mathrm{min})\sum \limits _{i=1}^{n}K_{i}(\rho _{i}^{l}-1)^2\xi _{i}^{\alpha _{i}} \right] \\&= (F_\mathrm{max}-F)(F-F_\mathrm{min}) \left\{ \sum \limits _{i=1}^{n}K_{i}(\rho _{i}^{l}-1)^2\xi _{i}^{\alpha _{i}} \right\} ^{2}\\&= (F_\mathrm{max}\,\cdot \,F-F_\mathrm{max}\,\cdot \, F_\mathrm{min}-F^2+F\,\cdot \,F_\mathrm{min})\times \left\{ \sum \limits _{i=1}^{n}K_{i}(\rho _{i}^{l}-1)^2\xi _{i}^{\alpha _{i}} \right\} ^{2} \\&= \left[ -\left( F-\frac{F_\mathrm{max}+F_\mathrm{min}}{2} \right) ^2+\frac{(F_\mathrm{max}-F_\mathrm{min})^2}{4} \right] \times \left\{ \sum \limits _{i=1}^{n}K_{i}(\rho _{i}^{l}-1)^2\xi _{i}^{\alpha _{i}} \right\} ^{2}. \end{aligned}$$

    Thus, the appropriate fraction of the promotional cost sharing is obtained as \(F=(F_\mathrm{max}+F_\mathrm{min})/2\).

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakhira, N., Maiti, M.K. & Maiti, M. Fuzzy Optimization for Multi-item Supply Chain with Trade Credit and Two-Level Price Discount Under Promotional Cost Sharing. Int. J. Fuzzy Syst. 20, 1644–1655 (2018). https://doi.org/10.1007/s40815-017-0434-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0434-7

Keywords

Navigation