Abstract
This paper describes a new approach for time series prediction based on using different soft computing techniques, such as neural networks (NNs), type-1 and type-2 fuzzy logic systems and bio-inspired algorithms, where each of these intelligent techniques can provide a variety of features for solving real and complex problems. Therefore, this paper describes the application of ensembles of interval type-2 fuzzy neural network (IT2FNN) models. The IT2FNN uses hybrid learning algorithm techniques from NNs models and fuzzy logic systems. The output of the Ensemble of IT2FNN models needs the integration process to forecast the time series, and we are required to design the fuzzy integrator (FI) to solve this real problem. Genetic algorithms and particle swarm optimization are used for the optimization of the parameter values in the membership functions of the FI. We consider different time series to measure the performance of the proposed model, and these time series are: Mackey–Glass, Mexican Stock Exchange (MSE or BMV), Dow Jones and NASDAQ. The forecasting errors are calculated as follows: mean absolute error, mean square error (MSE), root-mean-square error, mean percentage error and mean absolute percentage error. The best prediction errors are illustrated as follows: 0.00025 for the Mackey–Glass, 0.01012 for the MSE, 0.01307 for the Dow Jones and 0.01171 for the NASDAQ time series. Simulation results are compared using a statistical test and provide evidence of the potential advantages of the proposed approach.
































Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Rather, A.M., Agarwal, A., Sastry, V.N.: Recurrent neural network and a hybrid model for prediction of stock returns. Exp. Syst. Appl. 42(5), 3234–3241 (2015)
Ascia, G., Catania, V., Panno, D.: An integrated fuzzy-GA approach for buffer management. IEEE Trans. Fuzzy Syst. 14(4), 528–541 (2006)
Blau, B.M., Van-Ness, B.F., Van-Ness, R.A.: Information in short selling: comparing NASDAQ and the NYSE. Rev. Financ. Econ. 20(1), 1–10 (2011)
Bonissone, P.P., Subbu, R., Eklund, N., Kiehl, T.R.: Evolutionary algorithms + domain knowledge = real-world evolutionary computation. IEEE Trans. Evol. Comput. 10(3), 256–280 (2006)
Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control, 3rd edn. Prentice Hall, Englewood Cliffs (1994)
Buckles, B.P., Petry, F.E.: Genetic Algorithms. IEEE Computer Society Press, Washington (1992)
Castellanos, S.G., Martínez, L.: Development of the Mexican bond market. In: Borensztein, E., Cowan, K., Eichengreen, B., Panizza, U. (eds.) Bond Markets in Latin America: On the Verge of a Big Bang?, pp. 51–58. MIT Press, Cambridge (2008)
Castillo, O., Melin, P.: Comparison of Hybrid Intelligent Systems, Neural Networks and Interval Type-2 Fuzzy Logic for Time Series Prediction, pp. 3086–3091. IJCNN, Orlando (2007)
Castillo, O., Melin, P.: Optimization of type-2 fuzzy systems based on bio-inspired methods: a concise review. Inf. Sci. 205, 1–19 (2012)
Castro, J.R., Castillo, O., Martínez, L.G.: Interval type-2 fuzzy logic toolbox. Eng. Lett. 15, 89–98 (2007)
Castro, J.R., Castillo, O., Melin, P., Rodriguez, A.: A Hybrid Learning Algorithm for Interval Type-2 Fuzzy Neural Networks: The Case of Time Series Prediction, vol. 15a, pp. 363–386. Springer, Berlin (2008)
Chiou, Y.C., Lan, L.W.: Genetic fuzzy logic controller: an iterative evolution algorithm with new encoding method. Fuzzy Sets Syst. 152, 617–635 (2005)
Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multimodal complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)
Cowpertwait, P.S.P., Metcalfe, A.V.: Introductory Time Series with R, pp. 2–5. Springer, Dordrecht (2009)
Deb, K.: A population-based algorithm-generator for real-parameter optimization. Soft Comput. 9(4), 236–253 (2005)
Dow Jones Company. http://www.dowjones.com. 10 Jan 2014
Dow Jones Indexes. http://www.djindexes.com. 5 Sept 2014
Durbin, J., Koopman, S.J.: Time Series Analysis by State Space Methods, vol. 38, 2nd edn. Oxford University Press, Oxford (2014)
Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of 6th International Symposium Micro Machine and Human Science (MHS), pp. 39–43 (1995)
Eberhart, R., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1, pp. 84–88 (2000)
Engelbrech, P.: Fundamentals of Computational of Swarm Intelligence: Basic Particle Swarm Optimization, pp. 93–129. Wiley, New York (2005)
Erland, E., Ola, H.: Multivariate time series modeling, estimation and prediction of mortalities. Insur. Math. Econ. 65, 156–171 (2015)
Escalante, H.J., Montes, M., Sucar, L.E.: Particle swarm model selection. J. Mach. Learn. Res. 10, 405–440 (2009)
Gaxiola, F., Melin, P., Valdez, F., Castillo, O.: Interval type-2 fuzzy weight adjustment for backpropagation neural networks with application in time series prediction. Inf. Sci. 260, 1–14 (2014)
Gaxiola, F., Melin, P., Valdez, F., Castillo, O.: Optimization of type-2 fuzzy weight for neural network using genetic algorithm and particle swarm optimization. In: NaBIC, pp. 22–28 (2013)
Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: motivation, analysis, and first results. Complex Syst. 3, 493–530 (1989)
Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley, Reading (1989)
Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design. PWS Publishing, Boston (1996)
Hagras, H.: Comments on dynamical optimal training for interval type-2 fuzzy neural network (T2FNN). IEEE Trans. Syst. Man Cybern. B 36, 1206–1209 (2006)
Haykin, S.: Adaptive Filter Theory. Prentice Hall, Englewood Cliffs (2002). ISBN 0-13-048434-2
Historic Dow Jones Data, Yahoo Finance. http://finance.yahoo.com. 10 Jan 2014
Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)
Horikowa S., Furuhashi T., Uchikawa Y.: On fuzzy modeling using fuzzy neural networks with the backpropagation algorithm. IEEE Trans. Neural Netw. 3, 801–806 (1992)
NASDAQ indices. http://business.nasdaq.com/discover/nasdaq-story/index.html. 27 April 2015
Time series of Dow Jones. https://es-us.finanzas.yahoo.com/q/hp?s=%5EEDJI+Precios+historicos. 8 May 2015
Time series MSE. https://es-us.finanzas.yahoo.com/q/hp?s=%5EIXIC+Precios+historicos. 9 May 2015
Time series of NASDAQ. https://es-us.finanzas.yahoo.com/q/hp?s=%5EMXX+Precios+historicos. 7 May 2015
Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Trans. Fuzzy Syst. 3, 260–270 (1995)
Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 23, 665–685 (1992)
Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Prentice-Hall, New York (1997)
Jang J.S.R.: Fuzzy modeling using generalized neural networks and Kalman filter algorithm. In: Proceedings of the Ninth National Conference on Artificial Intelligence.(AAAI-91), pp. 762–767 (1991)
Karnik, N.N., Mendel, J.M.: An Introduction to Type-2 Fuzzy Logic Systems. University of Southern California, Los Angeles (1998)
Karnik, N.N., Mendel, J.M.: Applications of type-2 fuzzy logic systems to forecasting of time-series. Inf. Sci. 20, 89–111 (1999)
Karnik, N.N., Mendel, J.M., Qilian, L.: Type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 7, 643–658 (1999)
Koza, J.R.: Genetic Programming. On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
Lee, C.H., Hong, J.L., Lin, Y.C., Lai, W.Y.: Type-2 fuzzy neural network systems and learning. Int. J. Comput. Cogn. 1, 79–90 (2003)
Lee, C.H., Lin, Y.C.: Type-2 fuzzy neuro system via input-to-state-stability approach. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) International Symposium on Neural Networks. LNCS, vol. 4492, pp. 317–327. Springer, Heidelberg (2007)
Lee, H., Shin, G., Hong, S., Choi, J., Chun, M.: Post-chlorination process control based on flow prediction by time series neural network in water treatment plant. Int. J. Fuzzy Logic Intell. Syst. 16, 197–207 (2016)
Lee, J., Lee, J.-H.: Constructing efficient regional hazardous weather prediction models through big data analysis. Int. J. Fuzzy Logic Intell. Syst. 16, 1–12 (2016)
Lin, Y.C., Lee, C.H.: System identification and adaptive filter using a novel fuzzy neuro system. Int. J. Comput. Cogn. 5 1–12 (2007)
López, F., Santillán, R.J., Cruz, S.: Volatility dependence structure between the Mexican stock exchange and the world capital market. Investig. Econ. 74, 69–97 (2015)
Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197, 287–289 (1997)
Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach. Stud. 7, 1–13 (1975)
Melin, P., Soto, J., Castillo, O., Soria, J.: A new approach for time series prediction using ensembles of ANFIS models. Exp. Syst. Appl. 39, 3494–3506 (2012)
Mendel, J.M.: Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, pp. 259–674. Prentice-Hall, Englewood Cliffs (2001)
Pagano, M.S., Peng, L., Schwartz, R.A.: A call auction’s impact on price formation and order routing: evidence from the NASDAQ stock market. J. Financ. Mark. 16, 331–361 (2013)
Pedrycz, W.: Concepts and design aspects of granular models of type-1 and type-2. Int. J. Fuzzy Logic Intell. Syst. 15, 87–95 (2015)
Pedrycz, W.: Fuzzy Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (1997)
Pedrycz, W.: Fuzzy Modelling: Paradigms and Practice. Kluwer Academic Press, Dordrecht (1996)
Pulido, M., Melin, P.: A New Method for Type-2 Fuzzy Integration in Ensemble Neural Networks Based on Genetic Algorithms. In: Castillo, O., et al. (eds.) Recent Advances on Hybrid Intelligent Systems, vol. 451, pp. 173–182. Springer, New York (2013)
Pulido, M., Melin, P., Castillo, O.: Particle swarm optimization of ensemble neural networks with fuzzy aggregation for time series prediction of the mexican stock exchange. Inf. Sci. 280, 188–204 (2014)
Pulido, M., Melin, P.: Optimization of ensemble neural networks with fuzzy integration using the particle swarm algorithm for time series prediction. In: Melin, P., et al. (eds.) Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization, vol. 601, pp. 171–184. Springer, New York (2015)
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, Englewood Cliffs (2003)
Shu-Xian, L., Xian-Shuang, Y., Hong-Yun, Q., Hai-Feng, H.: A novel model of leaky integrator echo state network for time-series prediction. Neurocomputing 159, 58–66 (2015)
Sidaoui, J.: The Mexican financial system: reforms and evolution 1995–2005. BIS Pap. 28, 277–293 (2006)
Soto, J., Melin, P., Castillo, O.: Time series prediction using ensembles of ANFIS models with genetic optimization of interval type-2 and type-1 fuzzy integrators. Int. J. Hybrid Intell. Syst. 11, 211–226 (2014)
Takagi, T., Sugeno, M.: Derivation of fuzzy control rules from human operation control actions. In: Proceedings of the IFAC Symposium on Fuzzy Information, Knowledge Representation and Decision Analysis, pp. 55–60 (1983)
Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15, 116–132 (1985)
Valipour, M.: Ability of Box–Jenkins models to estimate of reference potential evapotranspiration. A case study Mehrabad synoptic station, Tehran, Iran. IOSR J. Agric. Vet. Sci. 1, 1–11 (2012)
Valipour, M.: Analysis of potential evapotranspiration using limited weather data. Appl. Water Sci. 7, 187–197 (2017)
Valipour, M.: How much meteorological information is necessary to achieve reliable accuracy for rainfall estimations? Agriculture 6, 1–9 (2016)
Valipour, M., Mohammad, A.G.S., Mahmoud, R.-S.: Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agric. Water Manag. 180, 50–60 (2017)
Valipour, M., Mohammad, E.B., Seyyed, M.R.B.: Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 476, 433–441 (2013)
Wang, C.H., Cheng, C.S., Lee, T.T.: Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN). IEEE Trans. Syst. Man Cybern. B Cybern. 34, 1462–1477 (2004)
Wei, W.W.S.: Time Series Analysis: Univariate and Multivariate Methods, vol. 1, pp. 40–100. Addison-Wesley, Reading (2003)
Weina, W., Witold, P., Xiaodong, L.: Time series long-term forecasting model based on information granules and fuzzy clustering. Eng. Appl. Artif. Intell. 41, 17–24 (2015)
Wu, D., Mendel, J.M.: A vector similarity measure for interval type-2 fuzzy sets and type-1 fuzzy sets. Inf. Sci. 178, 381–402 (2008)
Wu, D., Wan-Tan, W.: Genetic learning and performance evaluation of interval type-2 fuzzy logic controllers. Eng. Appl. Artif. Intell. 19, 829–841 (2006)
Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4, 103–111 (1996)
Zadeh, L.A.: Fuzzy logic. Computer 1, 83–93 (1988)
Zadeh, L.A.: Fuzzy logic, neural networks and soft computing. Commun. ACM 37, 77–84 (1994)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Soto, J., Melin, P. & Castillo, O. A New Approach for Time Series Prediction Using Ensembles of IT2FNN Models with Optimization of Fuzzy Integrators. Int. J. Fuzzy Syst. 20, 701–728 (2018). https://doi.org/10.1007/s40815-017-0443-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-017-0443-6