Abstract
Motivated by the idea of interval neutrosophic uncertain linguistic sets and hesitant fuzzy sets, this paper proposed the concept of hesitant interval neutrosophic uncertain linguistic sets (HINULSs) and hesitant interval neutrosophic uncertain linguistic elements (HINULEs) and then proposed some basic operational rules, properties, the score, accuracy, and certainty functions for HINULEs. Further, based on these operational rules, we defined some aggregation operators, such as hesitant interval neutrosophic uncertain linguistic (HINUL) prioritized weighted averaging average (HINULPWA) operator, HINUL prioritized weighted geometric (HINULPWG) operator, and generalized HINUL prioritized weighted aggregation (GHINULPWA) operator to aggregate HINULSs, and some desired properties of these operators are investigated. A group decision-making method based on GHINULPWA operator is developed to handle multiple criteria group decision-making problems, in which criteria values take the form of HINULEs and there exist prioritized relations among the criteria. Finally, a numerical example about investment selections is given to show the advantages of the proposed method.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)
Smarandache, F.: Neutrosophy: neutrosophic probability, set, and logic. American Research press, Rehoboth (1998)
Atanassov, K.T., Gargov, G.: Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31(3), 343–349 (1989)
Wang, H., Madiraju, P., Zhang, Y., Sunderramn, R.: Interval neutrosophic sets. Int. J. Appl. Math. Stat. 3(5), 1–18 (2005)
Wang, H., Smarandache, F., Zhang, Y.Q., Sunderraman, R.: Single valued neutrosophic sets. Multispace Multistructure 4, 410–413 (2010)
Ye, J.: Another form of correlation coefficient between single valued neutrosophic sets and its multiple attribute decision-making method. Neutrosophic Sets Syst. 1(1), 8–12 (2013)
Ye, J.: Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. Int. J. Gen Syst. 42(4), 386–394 (2013)
Ye, J.: Similarity measures between interval neutrosophic sets and their applications in multicriteria decision-making. J. Intell. Fuzzy Syst. 26(1), 165–172 (2014)
Ye, J.: Single valued neutrosophic cross-entropy for multicriteria decision making problems. Appl. Math. Model. 38(3), 1170–1175 (2014)
Majumdar, P., Samanta, S.K.: On similarity and entropy of neutrosophic sets. J. Intell. Fuzzy Syst. 26(3), 1245–1252 (2014)
Broumi, S., Smarandache, F.: Several similarity measures of neutrosophic sets. Neutrosophic Sets Syst. 1(1), 54–62 (2013)
Broumi, S., Smarandache, F.: Correlation coefficient of interval neutrosophic set. Appl. Mech. Mater. 436, 511–517 (2013)
Ye, J.: A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 26(5), 2459–2466 (2014)
Peng, J.J., Wang, J.Q., Wang, J., Zhang, H.Y., Chen, X.H.: Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems. Int. J. Syst. Sci. 2014, 1–17 (2014)
Peng, J.J., Wang, J.Q., Wang, J., Zhang, H.Y., Chen, X.H.: An outranking approach for multi-criteria decision-making problems with simplified neutrosophic sets. Appl. Soft Comput. 25, 336–346 (2014)
Zhang, H.Y., Wang, J.Q., Chen, X.H.: Interval neutrosophic sets and their application in multicriteria decision making problems. Sci World J 2014 (2014)
Torra, V., Narukawa, Y: On hesitant fuzzy sets and decision. In: IEEE international conference on fuzzy systems, 2009. FUZZ-IEEE 2009, pp. 1378–1382. IEEE (2009)
Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010)
Farhadinia, B.: Information measures for hesitant fuzzy sets and interval-valued hesitant fuzzy sets. Inf. Sci. 240, 129–144 (2013)
Farhadinia, B.: Distance and similarity measures for higher order hesitant fuzzy sets. Knowl.-Based Syst. 55, 43–48 (2014)
Zhu, B., Xu, Z., Xia, M.: Hesitant fuzzy geometric Bonferroni means. Inf. Sci. 205, 72–85 (2012)
Wei, G.: Hesitant fuzzy prioritized operators and their application to multiple attribute decision making. Knowl.-Based Syst. 31, 176–182 (2012)
Xia, M., Xu, Z., Chen, N.: Some hesitant fuzzy aggregation operators with their application in group decision making. Group Decis. Negot. 22(2), 259–279 (2013)
Xu, Z., Xia, M.: Distance and similarity measures for hesitant fuzzy sets. Inf. Sci. 181(11), 2128–2138 (2011)
Xu, Z., Xia, M.: On distance and correlation measures of hesitant fuzzy information. Int. J. Intell. Syst. 26(5), 410–425 (2011)
Xu, Z., Xia, M.: Hesitant fuzzy entropy and cross-entropy and their use in multiattribute decision-making. Int. J. Intell. Syst. 27(9), 799–822 (2012)
Meng, F., Chen, X.: Correlation coefficients of hesitant fuzzy sets and their application based on fuzzy measures. Cognit. Comput. 7(4), 445–463 (2015)
Zhu, B., Xu, Z., Xia, M.: Dual hesitant fuzzy sets. J. Appl. Math. 2012, 1–17 (2012)
Ye, J.: Multiple-attribute decision-making method under a single-valued neutrosophic hesitant fuzzy environment. Int. J. Intell. Syst. 24(1), 23–36 (2015)
Liu, P., Shi, L.: The generalized hybrid weighted average operator based on interval neutrosophic hesitant set and its application to multiple attribute decision making. Neural Comput. Appl. 26(2), 457–471 (2015)
Rodríguez, R.M., Martínez, L., Herrera, F.: Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. Fuzzy Syst. 20, 109–119 (2012)
Gou, X.J., Xu, Z.S.: Novel basic operational laws for linguistic terms, hesitant fuzzy linguistic term sets and probabilistic linguistic term sets. Inf. Sci. 372, 407–427 (2015)
Riera, J.V., Massanet, S., Herrera-Viedma, E., Torrens, J.: Some interesting properties of the fuzzy linguistic model based on discrete fuzzy numbers to manage hesitant fuzzy linguistic information. Appl. Soft Comput. 36, 383–391 (2015)
Gou, X.J., Liao, H.C., Xu, Z.S., Herrera, F.: Double hierarchy hesitant fuzzy linguistic term set and MULTIMOORA method: a case of study to evaluate the implementation status of haze controlling measures. Inf. Fusion 38, 22–34 (2017)
Dong, Y., Li, C.C., Herrera, F.: Connecting the linguistic hierarchy and the numerical scale for the 2-tuple linguistic model and its use to deal with hesitant unbalanced linguistic information. Inf. Sci. 367–368, 259–278 (2016)
Durand, M., Truck, I.: A new proposal to deal with hesitant linguistic expressions on preference assessments. Inf. Fusion 41, 175–181 (2018)
Rodríguez, R.M., Bedregal, B., Bustince, H., Dong, Y.C., Farhadinia, B., Kahraman, C., Martínez, L., Torra, V., Xu, Y.J., Xu, Z.S., Herrera, F.: A position and perspective analysis of hesitant fuzzy sets on information fusion in decision making. Towards high quality progress. Inf. Fusion 29, 89–97 (2016)
Wang, J.Q., Li, J.J.: The multi-criteria group decision making method based on multi-granularity intuitionistic two semantics. Science & Technology Information 33(1), 8–9 (2009)
Wang, J.Q., Li, H.B.: Multi-criteria decision-making method based on aggregation operators for intuitionistic linguistic fuzzy numbers. Control Decis. 25(10), 1571–1574 (2010)
Liu, P., Jin, F.: Methods for aggregating intuitionistic uncertain linguistic variables and their application to group decision making. Inf. Sci. 205, 58–71 (2012)
Liu, P., Liu, Z., Zhang, X.: Some intuitionistic uncertain linguistic Heronian mean operators and their application to group decision making. Appl. Math. Comput. 230, 570–586 (2014)
Liu, P., Shi, L.: Some neutrosophic uncertain linguistic number Heronian mean operators and their application to multi-attribute group decision making. Neural Comput. Appl. 28(5), 1079–1093 (2017)
Ye, J.: Multiple attribute group decision making based on interval neutrosophic uncertain linguistic variables. Int. J. Mach. Learn. Cybernet. 8(3), 837–848 (2017)
Yager, R.R.: Prioritized aggregated operators. Int. J. Approx. Reason. 48(1), 263–274 (2008)
Yager, R.R.: Prioritized OWA aggregated. Fuzzy Optim. Decis. Mak. 10(8), 245–262 (2009)
Liu, P.D., Wang, Y.M.: Interval neutrosophic prioritized OWA operator and its application to multiple attribute decision making. J. Syst. Sci. Complex. 29(3), 681–697 (2016)
Liu, P.D., Li, Y., Antuchevičienė, J.: A multi-criteria decision-making method based on intuitionistic trapezoidal fuzzy prioritized OWA operator. Technol. Econ. Dev. Econ. 22(3), 453–469 (2016)
Tian, Z.P., Wang, J., Zhang, H.Y., Wang, J.Q.: Multi-criteria decision-making based on generalized prioritized aggregation operators under simplified neutrosophic uncertain linguistic environment. Int. J. Mach. Learn. Cybernet. (2017). https://doi.org/10.1007/s13042-016-0552-9
Herrera, F., Herrera-Viedma, E.: A model of consensus in group decision making under linguistic assessments. Fuzzy Sets Syst. 78(1), 73–87 (1996)
Herrera, F., Herrera-Viedma, E.: Linguistic decision analysis: steps for solving decision problems under linguistic information. Fuzzy Sets Syst. 115(1), 67–82 (2000)
Xu, Z.: Uncertain linguistic aggregation operators based approach to multiple attribute group decision making under uncertain linguistic environment. Inf. Sci. 168(1), 171–184 (2004)
Xu, Z.: A note on linguistic hybrid arithmetic averaging operator in multiple attribute group decision making with linguistic information. Group Decis. Negot. 15(6), 593–604 (2006)
Wang, J.Q., Wu, J.T., Wang, J., Zhang, H.Y., Chen, X.H.: Interval-valued hesitant fuzzy linguistic sets and their applications in multi-criteria decision-making problems. Inf. Sci. 288, 55–72 (2014)
Yager, R.R.: Choquet aggregation using order inducing variables. Int J Uncertain. Fuzziness Knowl. Based Syst. 12(1), 69–88 (2004)
Acknowledgements
This paper is supported by the National Natural Science Foundation of China (Nos. 71771140, 71471172), the Special Funds of Taishan Scholars Project of Shandong Province (No. ts201511045), Shandong Provincial Social Science Planning Project (Nos. 17BGLJ04, 16CGLJ31 and 16CKJJ27).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
We declare that we have no commercial or associative interest that represents a conflict of interest in connection with work submitted.
Appendices
Appendix 1: Proof of Theorem 2
We prove Eq. (35) by the use of mathematical induction.
-
(1)
For \(m = 2\), we have
$$\begin{aligned} \frac{{T_{1} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}{\mathfrak{N}}_{1} = \bigcup\nolimits_{{u_{1} \in {\mathfrak{N}}_{1} }} {\left\langle {\left[ {f^{* - 1} \left( {\frac{{T_{1} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right)} \right),f^{* - 1} \left( {\frac{{T_{1} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)} \right],\left( {t\left( {u_{1} } \right),i\left( {u_{1} } \right),f\left( {u_{1} } \right)} \right)} \right\rangle } \hfill \\ \frac{{T_{2} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}{\mathfrak{N}}_{2} = \bigcup\nolimits_{{u_{2} \in {\mathfrak{N}}_{2} }} {\left\langle {\left[ {f^{* - 1} \left( {\frac{{T_{2} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right)} \right),f^{* - 1} \left( {\frac{{T_{2} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)} \right],\left( {t\left( {u_{2} } \right),i\left( {u_{2} } \right),f\left( {u_{2} } \right)} \right)} \right\rangle } \hfill \\ \end{aligned}$$Then
$$\begin{aligned} {\rm HINULPWA}\left( {{\mathfrak{N}}_{1} ,{\mathfrak{N}}_{2} } \right) = & \frac{{T_{1} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}{\mathfrak{N}}_{1} \oplus \frac{{T_{2} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}{\mathfrak{N}}_{2} \\ & = \bigcup\limits_{{u_{1} \in {\mathfrak{N}}_{1} ,u_{2} \in {\mathfrak{N}}_{2} }} \begin{aligned} \left\langle {\left[ {f^{* - 1} \left( {\frac{{T_{1} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + \frac{{T_{2} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right)} \right),f^{* - 1} \left( {\frac{{T_{1} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}f^{*} \left( {s_{{\tau (u_{1} )}} } \right) + \frac{{T_{2} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)} \right]} \right., \hfill \\ \left( {\left[ \begin{aligned} \frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} t_{1}^{L} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} t_{2}^{L} }}{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} }}, \hfill \\ \frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} t_{1}^{U} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} t_{2}^{U} }}{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} }} \hfill \\ \end{aligned} \right]} \right., \hfill \\ \left[ \begin{aligned} \frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} i_{1}^{L} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} i_{2}^{L} }}{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} }}, \hfill \\ \frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} i_{1}^{U} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} i_{2}^{U} }}{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} }} \hfill \\ \end{aligned} \right], \hfill \\ \left. {\left. {\left[ \begin{aligned} \frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} f_{1}^{L} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} f_{2}^{L} }}{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} }}, \hfill \\ \frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} f_{1}^{U} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} f_{2}^{U} }}{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} }} \hfill \\ \end{aligned} \right]} \right)} \right\rangle \hfill \\ \end{aligned} \\ \end{aligned}$$ -
(2)
Let us assume that Eq. (35) is true for \(m = b\), then
$$\begin{aligned} {\text{HINULPWA}}\left( {{\mathfrak{N}}_{1} ,{\mathfrak{N}}_{2} , \ldots ,{\mathfrak{N}}_{b} } \right) = & \frac{{T_{1} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}{\mathfrak{N}}_{1} \oplus \frac{{T_{2} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}{\mathfrak{N}}_{2} \oplus \cdots \oplus \frac{{T_{b} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}{\mathfrak{N}}_{b} \\ & = \bigcup\limits_{{u_{1} \in {\mathfrak{N}}_{1} ,u_{2} \in {\mathfrak{N}}_{2} , \ldots ,u_{b} \in {\mathfrak{N}}_{b} }} {\left\langle {\left[ {f^{* - 1} \left( {\sum\limits_{v = 1}^{b} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right)} \right)} } \right),f^{* - 1} \left( {\sum\limits_{v = 1}^{b} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)} } \right)} \right]} \right.} \\ \left( {\left[ {\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} t_{v}^{L} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} t_{v}^{U} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right]} \right., \\ \left[ {\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} i_{v}^{L} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} i_{v}^{U} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right], \\ \left. {\left. {\left[ {\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} f_{v}^{L} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} f_{v}^{U} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right]} \right)} \right\rangle \\ \end{aligned}$$ -
(3)
When \(m = b + 1,\) then
$$\begin{aligned} {\text{HINULPWA}}\left( {{\mathfrak{N}}_{1} ,{\mathfrak{N}}_{2} , \ldots ,{\mathfrak{N}}_{b + 1} } \right) = & \frac{{T_{1} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}{\mathfrak{N}}_{1} \oplus \frac{{T_{2} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}{\mathfrak{N}}_{2} \oplus \cdots \oplus \frac{{T_{b} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}{\mathfrak{N}}_{b} \oplus \frac{{T_{b + 1} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}{\mathfrak{N}}_{b + 1} \\ & = \bigcup\limits_{{u_{1} \in {\mathfrak{N}}_{1} ,u_{2} \in {\mathfrak{N}}_{2} , \ldots ,u_{b} \in {\mathfrak{N}}_{b} }} {\left\langle \begin{aligned} \left[ {f^{* - 1} \left( {\sum\limits_{v = 1}^{b} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right)} \right)} } \right),f^{* - 1} \left( {\sum\limits_{v = 1}^{b} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)} } \right)} \right] \hfill \\ \left\{ \begin{aligned} \left[ {\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} t_{v}^{L} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} t_{v}^{U} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right], \hfill \\ \left[ {\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} i_{v}^{L} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} i_{v}^{U} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right], \hfill \\ \left[ {\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} f_{v}^{L} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} f_{v}^{U} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right] \hfill \\ \end{aligned} \right\} \hfill \\ \end{aligned} \right\rangle } \\ \end{aligned}$$$$\oplus \bigcup\limits_{{u_{b + 1} \in {\mathfrak{N}}_{b + 1} }} {\left\langle \begin{aligned} f^{* - 1} \left( {\left[ {\frac{{T_{b + 1} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\vartheta (u_{b + 1} )}} } \right),\frac{{T_{b + 1} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\tau (u_{b + 1} )}} } \right)} \right]} \right), \hfill \\ \left[ {t_{b + 1}^{L} ,t_{b + 1}^{U} } \right],\left[ {i_{b + 1}^{L} ,i_{b + 1}^{U} } \right],\left[ {f_{b + 1}^{L} ,f_{b + 1}^{U} } \right] \hfill \\ \end{aligned} \right\rangle }$$$$= \bigcup\limits_{{u_{1} \in {\mathfrak{N}}_{1} ,u_{2} \in {\mathfrak{N}}_{2} , \ldots ,u_{b + 1} \in {\mathfrak{N}}_{b + 1} }} \begin{aligned} \left\langle {\left[ {f^{* - 1} \left( {\sum\limits_{v = 1}^{b + 1} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right)} \right)} } \right),f^{* - 1} \left( {\sum\limits_{v = 1}^{b + 1} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)} } \right)} \right]} \right. \hfill \\ \left( {\left[ {\frac{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} t_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} t_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right]} \right., \hfill \\ \left[ {\frac{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} i_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} i_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right], \hfill \\ \left. {\left. {\left[ {\frac{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} f_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} f_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right]} \right)} \right\rangle \hfill \\ \end{aligned}$$
Hence Eq. (35) is true for all \(m.\)
According to (1)–(3), Eq. (35) is kept.
Appendix 2: Proof of Theorem 3
According to the operational laws defined for HINULNs, we have
According to Theorem (2), we have
Hence, \({\text{HINULPWA}}\left( {a{\mathfrak{N}}_{1} ,a{\mathfrak{N}}_{2} , \ldots ,a{\mathfrak{N}}_{m} } \right) = {\text{aHINULPWA}}\left( {{\mathfrak{N}}_{1} ,{\mathfrak{N}}_{2} , \ldots ,{\mathfrak{N}}_{m} } \right).\)
Appendix 3: Proof of Theorem 4
According to Definition (7)
Thus, \({\text{HINULPWA}}\left( {{\mathfrak{N}}_{1} \oplus \rho_{1} ,{\mathfrak{N}}_{2} \oplus \rho_{2} , \ldots ,{\mathfrak{N}}_{m} \oplus \rho_{m} } \right) = {\text{HINULPWA}}\left( {{\mathfrak{N}}_{1} ,{\mathfrak{N}}_{2} , \ldots ,{\mathfrak{N}}_{m} } \right) \oplus {\text{HINULPWA}}\left( {\rho_{1} ,\rho_{2} , \ldots ,\rho_{m} } \right).\)
Rights and permissions
About this article
Cite this article
Liu, P., Khan, Q., Ye, J. et al. Group Decision-Making Method Under Hesitant Interval Neutrosophic Uncertain Linguistic Environment. Int. J. Fuzzy Syst. 20, 2337–2353 (2018). https://doi.org/10.1007/s40815-017-0445-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-017-0445-4