Skip to main content
Log in

Group Decision-Making Method Under Hesitant Interval Neutrosophic Uncertain Linguistic Environment

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Motivated by the idea of interval neutrosophic uncertain linguistic sets and hesitant fuzzy sets, this paper proposed the concept of hesitant interval neutrosophic uncertain linguistic sets (HINULSs) and hesitant interval neutrosophic uncertain linguistic elements (HINULEs) and then proposed some basic operational rules, properties, the score, accuracy, and certainty functions for HINULEs. Further, based on these operational rules, we defined some aggregation operators, such as hesitant interval neutrosophic uncertain linguistic (HINUL) prioritized weighted averaging average (HINULPWA) operator, HINUL prioritized weighted geometric (HINULPWG) operator, and generalized HINUL prioritized weighted aggregation (GHINULPWA) operator to aggregate HINULSs, and some desired properties of these operators are investigated. A group decision-making method based on GHINULPWA operator is developed to handle multiple criteria group decision-making problems, in which criteria values take the form of HINULEs and there exist prioritized relations among the criteria. Finally, a numerical example about investment selections is given to show the advantages of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

  2. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  Google Scholar 

  3. Smarandache, F.: Neutrosophy: neutrosophic probability, set, and logic. American Research press, Rehoboth (1998)

    MATH  Google Scholar 

  4. Atanassov, K.T., Gargov, G.: Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31(3), 343–349 (1989)

    Article  MathSciNet  Google Scholar 

  5. Wang, H., Madiraju, P., Zhang, Y., Sunderramn, R.: Interval neutrosophic sets. Int. J. Appl. Math. Stat. 3(5), 1–18 (2005)

    MathSciNet  Google Scholar 

  6. Wang, H., Smarandache, F., Zhang, Y.Q., Sunderraman, R.: Single valued neutrosophic sets. Multispace Multistructure 4, 410–413 (2010)

    MATH  Google Scholar 

  7. Ye, J.: Another form of correlation coefficient between single valued neutrosophic sets and its multiple attribute decision-making method. Neutrosophic Sets Syst. 1(1), 8–12 (2013)

    Google Scholar 

  8. Ye, J.: Multicriteria decision-making method using the correlation coefficient under single-valued neutrosophic environment. Int. J. Gen Syst. 42(4), 386–394 (2013)

    Article  MathSciNet  Google Scholar 

  9. Ye, J.: Similarity measures between interval neutrosophic sets and their applications in multicriteria decision-making. J. Intell. Fuzzy Syst. 26(1), 165–172 (2014)

    MATH  Google Scholar 

  10. Ye, J.: Single valued neutrosophic cross-entropy for multicriteria decision making problems. Appl. Math. Model. 38(3), 1170–1175 (2014)

    Article  MathSciNet  Google Scholar 

  11. Majumdar, P., Samanta, S.K.: On similarity and entropy of neutrosophic sets. J. Intell. Fuzzy Syst. 26(3), 1245–1252 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Broumi, S., Smarandache, F.: Several similarity measures of neutrosophic sets. Neutrosophic Sets Syst. 1(1), 54–62 (2013)

    Google Scholar 

  13. Broumi, S., Smarandache, F.: Correlation coefficient of interval neutrosophic set. Appl. Mech. Mater. 436, 511–517 (2013)

    Article  Google Scholar 

  14. Ye, J.: A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 26(5), 2459–2466 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Peng, J.J., Wang, J.Q., Wang, J., Zhang, H.Y., Chen, X.H.: Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems. Int. J. Syst. Sci. 2014, 1–17 (2014)

    Google Scholar 

  16. Peng, J.J., Wang, J.Q., Wang, J., Zhang, H.Y., Chen, X.H.: An outranking approach for multi-criteria decision-making problems with simplified neutrosophic sets. Appl. Soft Comput. 25, 336–346 (2014)

    Article  Google Scholar 

  17. Zhang, H.Y., Wang, J.Q., Chen, X.H.: Interval neutrosophic sets and their application in multicriteria decision making problems. Sci World J 2014 (2014)

    Google Scholar 

  18. Torra, V., Narukawa, Y: On hesitant fuzzy sets and decision. In: IEEE international conference on fuzzy systems, 2009. FUZZ-IEEE 2009, pp. 1378–1382. IEEE (2009)

  19. Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010)

    MATH  Google Scholar 

  20. Farhadinia, B.: Information measures for hesitant fuzzy sets and interval-valued hesitant fuzzy sets. Inf. Sci. 240, 129–144 (2013)

    Article  MathSciNet  Google Scholar 

  21. Farhadinia, B.: Distance and similarity measures for higher order hesitant fuzzy sets. Knowl.-Based Syst. 55, 43–48 (2014)

    Article  Google Scholar 

  22. Zhu, B., Xu, Z., Xia, M.: Hesitant fuzzy geometric Bonferroni means. Inf. Sci. 205, 72–85 (2012)

    Article  MathSciNet  Google Scholar 

  23. Wei, G.: Hesitant fuzzy prioritized operators and their application to multiple attribute decision making. Knowl.-Based Syst. 31, 176–182 (2012)

    Article  Google Scholar 

  24. Xia, M., Xu, Z., Chen, N.: Some hesitant fuzzy aggregation operators with their application in group decision making. Group Decis. Negot. 22(2), 259–279 (2013)

    Article  Google Scholar 

  25. Xu, Z., Xia, M.: Distance and similarity measures for hesitant fuzzy sets. Inf. Sci. 181(11), 2128–2138 (2011)

    Article  MathSciNet  Google Scholar 

  26. Xu, Z., Xia, M.: On distance and correlation measures of hesitant fuzzy information. Int. J. Intell. Syst. 26(5), 410–425 (2011)

    Article  Google Scholar 

  27. Xu, Z., Xia, M.: Hesitant fuzzy entropy and cross-entropy and their use in multiattribute decision-making. Int. J. Intell. Syst. 27(9), 799–822 (2012)

    Article  Google Scholar 

  28. Meng, F., Chen, X.: Correlation coefficients of hesitant fuzzy sets and their application based on fuzzy measures. Cognit. Comput. 7(4), 445–463 (2015)

    Article  Google Scholar 

  29. Zhu, B., Xu, Z., Xia, M.: Dual hesitant fuzzy sets. J. Appl. Math. 2012, 1–17 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Ye, J.: Multiple-attribute decision-making method under a single-valued neutrosophic hesitant fuzzy environment. Int. J. Intell. Syst. 24(1), 23–36 (2015)

    Google Scholar 

  31. Liu, P., Shi, L.: The generalized hybrid weighted average operator based on interval neutrosophic hesitant set and its application to multiple attribute decision making. Neural Comput. Appl. 26(2), 457–471 (2015)

    Article  Google Scholar 

  32. Rodríguez, R.M., Martínez, L., Herrera, F.: Hesitant fuzzy linguistic term sets for decision making. IEEE Trans. Fuzzy Syst. 20, 109–119 (2012)

    Article  Google Scholar 

  33. Gou, X.J., Xu, Z.S.: Novel basic operational laws for linguistic terms, hesitant fuzzy linguistic term sets and probabilistic linguistic term sets. Inf. Sci. 372, 407–427 (2015)

    Article  Google Scholar 

  34. Riera, J.V., Massanet, S., Herrera-Viedma, E., Torrens, J.: Some interesting properties of the fuzzy linguistic model based on discrete fuzzy numbers to manage hesitant fuzzy linguistic information. Appl. Soft Comput. 36, 383–391 (2015)

    Article  Google Scholar 

  35. Gou, X.J., Liao, H.C., Xu, Z.S., Herrera, F.: Double hierarchy hesitant fuzzy linguistic term set and MULTIMOORA method: a case of study to evaluate the implementation status of haze controlling measures. Inf. Fusion 38, 22–34 (2017)

    Article  Google Scholar 

  36. Dong, Y., Li, C.C., Herrera, F.: Connecting the linguistic hierarchy and the numerical scale for the 2-tuple linguistic model and its use to deal with hesitant unbalanced linguistic information. Inf. Sci. 367–368, 259–278 (2016)

    Article  Google Scholar 

  37. Durand, M., Truck, I.: A new proposal to deal with hesitant linguistic expressions on preference assessments. Inf. Fusion 41, 175–181 (2018)

    Article  Google Scholar 

  38. Rodríguez, R.M., Bedregal, B., Bustince, H., Dong, Y.C., Farhadinia, B., Kahraman, C., Martínez, L., Torra, V., Xu, Y.J., Xu, Z.S., Herrera, F.: A position and perspective analysis of hesitant fuzzy sets on information fusion in decision making. Towards high quality progress. Inf. Fusion 29, 89–97 (2016)

    Article  Google Scholar 

  39. Wang, J.Q., Li, J.J.: The multi-criteria group decision making method based on multi-granularity intuitionistic two semantics. Science & Technology Information 33(1), 8–9 (2009)

    Google Scholar 

  40. Wang, J.Q., Li, H.B.: Multi-criteria decision-making method based on aggregation operators for intuitionistic linguistic fuzzy numbers. Control Decis. 25(10), 1571–1574 (2010)

    MathSciNet  Google Scholar 

  41. Liu, P., Jin, F.: Methods for aggregating intuitionistic uncertain linguistic variables and their application to group decision making. Inf. Sci. 205, 58–71 (2012)

    Article  MathSciNet  Google Scholar 

  42. Liu, P., Liu, Z., Zhang, X.: Some intuitionistic uncertain linguistic Heronian mean operators and their application to group decision making. Appl. Math. Comput. 230, 570–586 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Liu, P., Shi, L.: Some neutrosophic uncertain linguistic number Heronian mean operators and their application to multi-attribute group decision making. Neural Comput. Appl. 28(5), 1079–1093 (2017)

    Article  Google Scholar 

  44. Ye, J.: Multiple attribute group decision making based on interval neutrosophic uncertain linguistic variables. Int. J. Mach. Learn. Cybernet. 8(3), 837–848 (2017)

    Article  Google Scholar 

  45. Yager, R.R.: Prioritized aggregated operators. Int. J. Approx. Reason. 48(1), 263–274 (2008)

    Article  Google Scholar 

  46. Yager, R.R.: Prioritized OWA aggregated. Fuzzy Optim. Decis. Mak. 10(8), 245–262 (2009)

    Article  Google Scholar 

  47. Liu, P.D., Wang, Y.M.: Interval neutrosophic prioritized OWA operator and its application to multiple attribute decision making. J. Syst. Sci. Complex. 29(3), 681–697 (2016)

    Article  Google Scholar 

  48. Liu, P.D., Li, Y., Antuchevičienė, J.: A multi-criteria decision-making method based on intuitionistic trapezoidal fuzzy prioritized OWA operator. Technol. Econ. Dev. Econ. 22(3), 453–469 (2016)

    Article  Google Scholar 

  49. Tian, Z.P., Wang, J., Zhang, H.Y., Wang, J.Q.: Multi-criteria decision-making based on generalized prioritized aggregation operators under simplified neutrosophic uncertain linguistic environment. Int. J. Mach. Learn. Cybernet. (2017). https://doi.org/10.1007/s13042-016-0552-9

    Article  Google Scholar 

  50. Herrera, F., Herrera-Viedma, E.: A model of consensus in group decision making under linguistic assessments. Fuzzy Sets Syst. 78(1), 73–87 (1996)

    Article  MathSciNet  Google Scholar 

  51. Herrera, F., Herrera-Viedma, E.: Linguistic decision analysis: steps for solving decision problems under linguistic information. Fuzzy Sets Syst. 115(1), 67–82 (2000)

    Article  MathSciNet  Google Scholar 

  52. Xu, Z.: Uncertain linguistic aggregation operators based approach to multiple attribute group decision making under uncertain linguistic environment. Inf. Sci. 168(1), 171–184 (2004)

    Article  MathSciNet  Google Scholar 

  53. Xu, Z.: A note on linguistic hybrid arithmetic averaging operator in multiple attribute group decision making with linguistic information. Group Decis. Negot. 15(6), 593–604 (2006)

    Article  Google Scholar 

  54. Wang, J.Q., Wu, J.T., Wang, J., Zhang, H.Y., Chen, X.H.: Interval-valued hesitant fuzzy linguistic sets and their applications in multi-criteria decision-making problems. Inf. Sci. 288, 55–72 (2014)

    Article  MathSciNet  Google Scholar 

  55. Yager, R.R.: Choquet aggregation using order inducing variables. Int J Uncertain. Fuzziness Knowl. Based Syst. 12(1), 69–88 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (Nos. 71771140, 71471172), the Special Funds of Taishan Scholars Project of Shandong Province (No. ts201511045), Shandong Provincial Social Science Planning Project (Nos. 17BGLJ04, 16CGLJ31 and 16CKJJ27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peide Liu.

Ethics declarations

Conflict of interest

We declare that we have no commercial or associative interest that represents a conflict of interest in connection with work submitted.

Appendices

Appendix 1: Proof of Theorem 2

We prove Eq. (35) by the use of mathematical induction.

  1. (1)

    For \(m = 2\), we have

    $$\begin{aligned} \frac{{T_{1} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}{\mathfrak{N}}_{1} = \bigcup\nolimits_{{u_{1} \in {\mathfrak{N}}_{1} }} {\left\langle {\left[ {f^{* - 1} \left( {\frac{{T_{1} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right)} \right),f^{* - 1} \left( {\frac{{T_{1} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)} \right],\left( {t\left( {u_{1} } \right),i\left( {u_{1} } \right),f\left( {u_{1} } \right)} \right)} \right\rangle } \hfill \\ \frac{{T_{2} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}{\mathfrak{N}}_{2} = \bigcup\nolimits_{{u_{2} \in {\mathfrak{N}}_{2} }} {\left\langle {\left[ {f^{* - 1} \left( {\frac{{T_{2} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right)} \right),f^{* - 1} \left( {\frac{{T_{2} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)} \right],\left( {t\left( {u_{2} } \right),i\left( {u_{2} } \right),f\left( {u_{2} } \right)} \right)} \right\rangle } \hfill \\ \end{aligned}$$

    Then

    $$\begin{aligned} {\rm HINULPWA}\left( {{\mathfrak{N}}_{1} ,{\mathfrak{N}}_{2} } \right) = & \frac{{T_{1} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}{\mathfrak{N}}_{1} \oplus \frac{{T_{2} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}{\mathfrak{N}}_{2} \\ & = \bigcup\limits_{{u_{1} \in {\mathfrak{N}}_{1} ,u_{2} \in {\mathfrak{N}}_{2} }} \begin{aligned} \left\langle {\left[ {f^{* - 1} \left( {\frac{{T_{1} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + \frac{{T_{2} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right)} \right),f^{* - 1} \left( {\frac{{T_{1} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}f^{*} \left( {s_{{\tau (u_{1} )}} } \right) + \frac{{T_{2} }}{{\sum\nolimits_{j = 1}^{2} {T_{j} } }}f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)} \right]} \right., \hfill \\ \left( {\left[ \begin{aligned} \frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} t_{1}^{L} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} t_{2}^{L} }}{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} }}, \hfill \\ \frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} t_{1}^{U} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} t_{2}^{U} }}{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} }} \hfill \\ \end{aligned} \right]} \right., \hfill \\ \left[ \begin{aligned} \frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} i_{1}^{L} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} i_{2}^{L} }}{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} }}, \hfill \\ \frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} i_{1}^{U} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} i_{2}^{U} }}{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} }} \hfill \\ \end{aligned} \right], \hfill \\ \left. {\left. {\left[ \begin{aligned} \frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} f_{1}^{L} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} f_{2}^{L} }}{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} }}, \hfill \\ \frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} f_{1}^{U} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} f_{2}^{U} }}{{\left( {f^{*} \left( {s_{{\vartheta (u_{1} )}} } \right) + f^{*} \left( {s_{{\tau (u_{1} )}} } \right)} \right)T_{1} + \left( {f^{*} \left( {s_{{\vartheta (u_{2} )}} } \right) + f^{*} \left( {s_{{\tau (u_{2} )}} } \right)} \right)T_{2} }} \hfill \\ \end{aligned} \right]} \right)} \right\rangle \hfill \\ \end{aligned} \\ \end{aligned}$$
  2. (2)

    Let us assume that Eq. (35) is true for \(m = b\), then

    $$\begin{aligned} {\text{HINULPWA}}\left( {{\mathfrak{N}}_{1} ,{\mathfrak{N}}_{2} , \ldots ,{\mathfrak{N}}_{b} } \right) = & \frac{{T_{1} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}{\mathfrak{N}}_{1} \oplus \frac{{T_{2} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}{\mathfrak{N}}_{2} \oplus \cdots \oplus \frac{{T_{b} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}{\mathfrak{N}}_{b} \\ & = \bigcup\limits_{{u_{1} \in {\mathfrak{N}}_{1} ,u_{2} \in {\mathfrak{N}}_{2} , \ldots ,u_{b} \in {\mathfrak{N}}_{b} }} {\left\langle {\left[ {f^{* - 1} \left( {\sum\limits_{v = 1}^{b} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right)} \right)} } \right),f^{* - 1} \left( {\sum\limits_{v = 1}^{b} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)} } \right)} \right]} \right.} \\ \left( {\left[ {\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} t_{v}^{L} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} t_{v}^{U} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right]} \right., \\ \left[ {\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} i_{v}^{L} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} i_{v}^{U} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right], \\ \left. {\left. {\left[ {\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} f_{v}^{L} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} f_{v}^{U} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right]} \right)} \right\rangle \\ \end{aligned}$$
  3. (3)

    When \(m = b + 1,\) then

    $$\begin{aligned} {\text{HINULPWA}}\left( {{\mathfrak{N}}_{1} ,{\mathfrak{N}}_{2} , \ldots ,{\mathfrak{N}}_{b + 1} } \right) = & \frac{{T_{1} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}{\mathfrak{N}}_{1} \oplus \frac{{T_{2} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}{\mathfrak{N}}_{2} \oplus \cdots \oplus \frac{{T_{b} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}{\mathfrak{N}}_{b} \oplus \frac{{T_{b + 1} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}{\mathfrak{N}}_{b + 1} \\ & = \bigcup\limits_{{u_{1} \in {\mathfrak{N}}_{1} ,u_{2} \in {\mathfrak{N}}_{2} , \ldots ,u_{b} \in {\mathfrak{N}}_{b} }} {\left\langle \begin{aligned} \left[ {f^{* - 1} \left( {\sum\limits_{v = 1}^{b} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right)} \right)} } \right),f^{* - 1} \left( {\sum\limits_{v = 1}^{b} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)} } \right)} \right] \hfill \\ \left\{ \begin{aligned} \left[ {\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} t_{v}^{L} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} t_{v}^{U} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right], \hfill \\ \left[ {\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} i_{v}^{L} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} i_{v}^{U} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right], \hfill \\ \left[ {\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} f_{v}^{L} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} f_{v}^{U} }}{{\sum\nolimits_{v = 1}^{b} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right] \hfill \\ \end{aligned} \right\} \hfill \\ \end{aligned} \right\rangle } \\ \end{aligned}$$
    $$\oplus \bigcup\limits_{{u_{b + 1} \in {\mathfrak{N}}_{b + 1} }} {\left\langle \begin{aligned} f^{* - 1} \left( {\left[ {\frac{{T_{b + 1} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\vartheta (u_{b + 1} )}} } \right),\frac{{T_{b + 1} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\tau (u_{b + 1} )}} } \right)} \right]} \right), \hfill \\ \left[ {t_{b + 1}^{L} ,t_{b + 1}^{U} } \right],\left[ {i_{b + 1}^{L} ,i_{b + 1}^{U} } \right],\left[ {f_{b + 1}^{L} ,f_{b + 1}^{U} } \right] \hfill \\ \end{aligned} \right\rangle }$$
    $$= \bigcup\limits_{{u_{1} \in {\mathfrak{N}}_{1} ,u_{2} \in {\mathfrak{N}}_{2} , \ldots ,u_{b + 1} \in {\mathfrak{N}}_{b + 1} }} \begin{aligned} \left\langle {\left[ {f^{* - 1} \left( {\sum\limits_{v = 1}^{b + 1} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right)} \right)} } \right),f^{* - 1} \left( {\sum\limits_{v = 1}^{b + 1} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)} } \right)} \right]} \right. \hfill \\ \left( {\left[ {\frac{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} t_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} t_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right]} \right., \hfill \\ \left[ {\frac{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} i_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} i_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right], \hfill \\ \left. {\left. {\left[ {\frac{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} f_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} f_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{b + 1} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right]} \right)} \right\rangle \hfill \\ \end{aligned}$$

Hence Eq. (35) is true for all \(m.\)

According to (1)–(3), Eq. (35) is kept.

Appendix 2: Proof of Theorem 3

According to the operational laws defined for HINULNs, we have

$$\zeta {\mathfrak{N}}_{v} = \bigcup\limits_{{u_{1} \in {\mathfrak{N}}_{1} ,u_{2} \in {\mathfrak{N}}_{2} , \ldots ,u_{m} \in {\mathfrak{N}}_{m} }} {\left\langle \begin{aligned} \left[ {f^{* - 1} \left( {\zeta \left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right)} \right)} \right),f^{* - 1} \left( {\zeta \left( {f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)} \right)} \right] \hfill \\ \left( {\left[ {\left( {t_{v}^{L} } \right),\left( {t_{v}^{U} } \right)} \right],\left[ {\left( {i_{v}^{L} } \right),\left( {i_{v}^{U} } \right)} \right],\left[ {\left( {f_{v}^{L} } \right),\left( {f_{v}^{U} } \right)} \right]} \right) \hfill \\ \end{aligned} \right\rangle }$$

According to Theorem (2), we have

$$\begin{aligned} {\text{HINULPWA}}\left( {a{\mathfrak{N}}_{1} ,a{\mathfrak{N}}_{2} , \ldots ,a{\mathfrak{N}}_{m} } \right) \hfill \\ = \bigcup\limits_{{u_{1} \in {\mathfrak{N}}_{1} ,u_{2} \in {\mathfrak{N}}_{2} , \ldots ,u_{m} \in {\mathfrak{N}}_{m} }} \begin{aligned} \left\langle {\left[ {f^{* - 1} \left( {\sum\nolimits_{v = 1}^{m} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}af^{*} \left( {s_{{\vartheta (u_{v} )}} } \right)} \right)} } \right),f^{* - 1} \left( {\sum\nolimits_{v = 1}^{m} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}af^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)} } \right)} \right]} \right. \hfill \\ \left( {\left[ {\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} t_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} t_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right],} \right. \hfill \\ \left[ {\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} i_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} i_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right], \hfill \\ \left. {\left. {\left[ {\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} f_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} f_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right]} \right)} \right\rangle \hfill \\ \end{aligned} \hfill \\ \end{aligned}$$
$$\begin{aligned} = \bigcup\limits_{{u_{1} \in {\mathfrak{N}}_{1} ,u_{2} \in {\mathfrak{N}}_{2} , \ldots ,u_{m} \in {\mathfrak{N}}_{m} }} \begin{aligned} \left\langle {\left[ {f^{* - 1} \left( {a\sum\limits_{v = 1}^{m} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right)} \right)} } \right),f^{* - 1} \left( {a\sum\limits_{v = 1}^{m} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)} } \right)} \right]} \right. \hfill \\ \left( {\left[ {\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} t_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} t_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right]} \right., \hfill \\ \end{aligned} \hfill \\ \left[ {\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} i_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} i_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right], \hfill \\ \left. {\left. {\left[ {\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} f_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} f_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right]} \right)} \right\rangle \hfill \\ \end{aligned}$$
$$\begin{aligned} {\text{aHINULPWA}}\left( {{\mathfrak{N}}_{1} ,{\mathfrak{N}}_{2} , \ldots ,{\mathfrak{N}}_{m} } \right) = & \left( a \right).\bigcup\limits_{{u_{1} \in {\mathfrak{N}}_{1} ,u_{2} \in {\mathfrak{N}}_{2} , \ldots ,u_{m} \in {\mathfrak{N}}_{m} }} \begin{aligned} \left\langle {\left[ {f^{* - 1} \left( {\sum\limits_{v = 1}^{m} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right)} \right)} } \right),f^{* - 1} \left( {\sum\limits_{v = 1}^{m} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)} } \right)} \right]} \right. \hfill \\ \left( {\left[ {\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} t_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} t_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right],} \right. \hfill \\ \end{aligned} \\ \left[ {\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} i_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} i_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right], \\ \left. {\left. {\left[ {\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} f_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} f_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right]} \right)} \right\rangle \\ \end{aligned}$$
$$= \bigcup\limits_{{u_{1} \in {\mathfrak{N}}_{1} ,u_{2} \in {\mathfrak{N}}_{2} , \ldots ,u_{m} \in {\mathfrak{N}}_{m} }} \begin{aligned} \left\langle {\left[ {f^{* - 1} \left( {a\sum\limits_{v = 1}^{m} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right)} \right)} } \right),f^{* - 1} \left( {a\sum\limits_{v = 1}^{m} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)} } \right)} \right]} \right. \hfill \\ \left( {\left[ {\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} t_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} t_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right]} \right., \hfill \\ \left[ {\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} i_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} i_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right], \hfill \\ \left. {\left. {\left[ {\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} f_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} f_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right]} \right)} \right\rangle \hfill \\ \end{aligned}$$

Hence, \({\text{HINULPWA}}\left( {a{\mathfrak{N}}_{1} ,a{\mathfrak{N}}_{2} , \ldots ,a{\mathfrak{N}}_{m} } \right) = {\text{aHINULPWA}}\left( {{\mathfrak{N}}_{1} ,{\mathfrak{N}}_{2} , \ldots ,{\mathfrak{N}}_{m} } \right).\)

Appendix 3: Proof of Theorem 4

According to Definition (7)

$$\begin{aligned} {\text{HINULPWA}}\left( {{\mathfrak{N}}_{1} \oplus \rho_{1} ,{\mathfrak{N}}_{2} \oplus \rho_{2} , \ldots ,{\mathfrak{N}}_{m} \oplus \rho_{m} } \right) \hfill \\ = \bigcup\limits_{\begin{subarray}{l} u_{1} \in {\mathfrak{N}}_{1} ,u_{2} \in {\mathfrak{N}}_{2} , \ldots ,u_{m} \in {\mathfrak{N}}_{m} , \\ k_{1} \in \rho_{1} ,k_{2} \in \rho_{2} , \ldots ,k_{m} \in \rho_{m} , \end{subarray} } \begin{aligned} \left\langle {\left[ {f^{* - 1} \left( {\sum\limits_{v = 1}^{m} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right)} \right) + \left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right)} \right)} } \right),f^{* - 1} \left( {\sum\limits_{v = 1}^{m} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right) + \left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)} } \right)} \right]} \right. \hfill \\ \left( {\left[ \begin{aligned} \frac{{\sum\nolimits_{v = 1}^{m} {\left( {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)t_{v}^{L} + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)t_{v}^{L} } \right)T_{v} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right) + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} } }}, \hfill \\ \frac{{\sum\nolimits_{v = 1}^{m} {\left( {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)t_{v}^{U} + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)t_{v}^{U} } \right)T_{v} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right) + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} } }} \hfill \\ \end{aligned} \right]} \right., \hfill \\ \end{aligned} , \hfill \\ \left[ \begin{aligned} \frac{{\sum\nolimits_{v = 1}^{m} {\left( {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)i_{v}^{L} + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)i_{v}^{L} } \right)T_{v} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right) + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} } }}, \hfill \\ \frac{{\sum\nolimits_{v = 1}^{m} {\left( {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)i_{v}^{U} + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)i_{v}^{U} } \right)T_{v} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right) + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} } }} \hfill \\ \end{aligned} \right], \hfill \\ \left. {\left. {\left[ \begin{aligned} \frac{{\sum\nolimits_{v = 1}^{m} {\left( {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)f_{v}^{L} + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)f_{v}^{L} } \right)T_{v} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right) + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} } }}, \hfill \\ \frac{{\sum\nolimits_{v = 1}^{m} {\left( {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)f_{v}^{U} + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)f_{v}^{U} } \right)T_{v} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right) + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} } }} \hfill \\ \end{aligned} \right]} \right)} \right\rangle \hfill \\ \end{aligned}$$
$$\begin{aligned} {\text{HINULPWA}}\left( {{\mathfrak{N}}_{1} ,{\mathfrak{N}}_{2} , \ldots ,{\mathfrak{N}}_{m} } \right) \oplus {\text{HINULPWA}}\left( {\rho_{1} ,\rho_{2} , \ldots ,\rho_{m} } \right) \hfill \\ = \bigcup\limits_{{u_{1} \in {\mathfrak{N}}_{1} ,u_{2} \in {\mathfrak{N}}_{2} , \ldots ,u_{m} \in {\mathfrak{N}}_{m} }} \begin{aligned} \left\langle {\left[ {f^{* - 1} \left( {\sum\limits_{v = 1}^{m} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right)} \right)} } \right),f^{* - 1} \left( {\sum\limits_{v = 1}^{m} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)} } \right)} \right]} \right. \hfill \\ \left( {\left[ {\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} t_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} t_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right]} \right., \hfill \\ \left[ {\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} i_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} i_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right], \hfill \\ \left. {\left. {\left[ {\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} f_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} f_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)T_{v} } }}} \right]} \right)} \right\rangle \hfill \\ \end{aligned} \hfill \\ \end{aligned}$$
$$\begin{aligned} \oplus \bigcup\limits_{{k_{1} \in \rho_{1} ,k_{2} \in \rho_{2} , \ldots ,k_{m} \in \rho_{m} }} \begin{aligned} \left\langle {\left[ {f^{* - 1} \left( {\sum\limits_{v = 1}^{m} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right)} \right)} } \right),f^{* - 1} \left( {\sum\limits_{v = 1}^{m} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)} } \right)} \right]} \right. \hfill \\ \left( {\left[ {\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} t_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} t_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} } }}} \right]} \right., \hfill \\ \left[ {\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} i_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} i_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} } }}} \right], \hfill \\ \end{aligned} \hfill \\ \left. {\left. {\left[ {\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} f_{v}^{L} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} } }},\frac{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} f_{v}^{U} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} } }}} \right]} \right)} \right\rangle \hfill \\ \end{aligned}$$
$$\begin{aligned} = \bigcup\limits_{\begin{subarray}{l} u_{1} \in {\mathfrak{N}}_{1} ,u_{2} \in {\mathfrak{N}}_{2} , \ldots ,u_{m} \in {\mathfrak{N}}_{m} , \\ k_{1} \in \rho_{1} ,k_{2} \in \rho_{2} , \ldots ,k_{m} \in \rho_{m} , \end{subarray} } \begin{aligned} \left\langle {\left[ {f^{* - 1} \left( {\sum\limits_{v = 1}^{m} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right)} \right) + \left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right)} \right)} } \right),f^{* - 1} \left( {\sum\limits_{v = 1}^{m} {\left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right) + \left( {\frac{{T_{v} }}{{\sum\nolimits_{j = 1}^{m} {T_{j} } }}f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)} } \right)} \right]} \right. \hfill \\ \left( {\left[ \begin{aligned} \frac{{\sum\nolimits_{v = 1}^{m} {\left( {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)t_{v}^{L} + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)t_{v}^{L} } \right)T_{v} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right) + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} } }}, \hfill \\ \frac{{\sum\nolimits_{v = 1}^{m} {\left( {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)t_{v}^{U} + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)t_{v}^{U} } \right)T_{v} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right) + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} } }} \hfill \\ \end{aligned} \right]} \right., \hfill \\ \end{aligned} , \hfill \\ \left[ \begin{aligned} \frac{{\sum\nolimits_{v = 1}^{m} {\left( {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)i_{v}^{L} + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)i_{v}^{L} } \right)T_{v} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right) + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} } }}, \hfill \\ \frac{{\sum\nolimits_{v = 1}^{m} {\left( {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)i_{v}^{U} + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)i_{v}^{U} } \right)T_{v} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right) + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} } }} \hfill \\ \end{aligned} \right], \hfill \\ \left. {\left. {\left[ \begin{aligned} \frac{{\sum\nolimits_{v = 1}^{m} {\left( {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)f_{v}^{L} + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)f_{v}^{L} } \right)T_{v} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right) + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} } }}, \hfill \\ \frac{{\sum\nolimits_{v = 1}^{m} {\left( {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right)f_{v}^{U} + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)f_{v}^{U} } \right)T_{v} } }}{{\sum\nolimits_{v = 1}^{m} {\left( {f^{*} \left( {s_{{\vartheta (u_{v} )}} } \right) + f^{*} \left( {s_{{\tau (u_{v} )}} } \right)} \right) + \left( {f^{*} \left( {s_{{\vartheta (k_{v} )}} } \right) + f^{*} \left( {s_{{\tau (k_{v} )}} } \right)} \right)T_{v} } }} \hfill \\ \end{aligned} \right]} \right)} \right\rangle \hfill \\ \end{aligned}$$

Thus, \({\text{HINULPWA}}\left( {{\mathfrak{N}}_{1} \oplus \rho_{1} ,{\mathfrak{N}}_{2} \oplus \rho_{2} , \ldots ,{\mathfrak{N}}_{m} \oplus \rho_{m} } \right) = {\text{HINULPWA}}\left( {{\mathfrak{N}}_{1} ,{\mathfrak{N}}_{2} , \ldots ,{\mathfrak{N}}_{m} } \right) \oplus {\text{HINULPWA}}\left( {\rho_{1} ,\rho_{2} , \ldots ,\rho_{m} } \right).\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Khan, Q., Ye, J. et al. Group Decision-Making Method Under Hesitant Interval Neutrosophic Uncertain Linguistic Environment. Int. J. Fuzzy Syst. 20, 2337–2353 (2018). https://doi.org/10.1007/s40815-017-0445-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0445-4

Keywords