Abstract
The P300 is a widely studied event-related potential, which allows non-muscular communication. In P300 induced brain–computer interfacing, one often comes across the challenge of modeling uncertainties due to fluctuations in EEG feature values within a specific session and across several sessions of EEG recordings of a specific subject. The relevance of fuzzy systems in this domain thus cannot be undermined. In this paper, the authors propose (a) an interval type-2 fuzzy classifier for detecting P300 occurrences and (b) a feature tuning algorithm for selection of Autoregressive Yule Parameter features of optimal lag-length corresponding to individual electrodes with an aim to maximize a classifier-oriented performance metric. The classifier performance metric is formulated as a simple objective function tailored to the classifier performance in terms of low uncertainty and high classification accuracy. The relationship between the proposed objective function value and classification accuracy is found to be statistically significant over iterations. The experimental results show that the proposed algorithm achieves an average accuracy of 90.8%.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abootalebi, V., Moradi, M.H., Khalilzadeh, M.A.: A new approach for EEG feature extraction in P300-based lie detection. Comput. Methods Progr. Biomed. 94(1), 48–57 (2009)
Berenji, H.R.: A reinforcement learning-based architecture for fuzzy logic control. Int. J. Approx. Reason. 6(2), 267–292 (1992)
Bhattacharjee, T., Kar, R., Konar, A., Lekova, A., Nagar, A.K.: A general type-2 fuzzy set induced single trial P300 detection. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6 (2017)
Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. (CSUR) 35(3), 268–308 (2003)
Cecotti, H., Graser, A.: Convolutional neural networks for P300 detection with application to brain–computer interfaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 433–445 (2011)
Chumerin, N., Manyakov, N.V., Combaz, A., Suykens, J.A.K., Yazicioglu, R.F., Torfs, T., Merken, P., Neves, H.P., Van Hoof, C., Van Hulle, M.M.: P300 detection based on Feature Extraction in on-line Brain–Computer Interface. In: Annual Conference on Artificial Intelligence, pp. 339–346 (2009)
Corsi-Cabrera, M., Galindo-Vilchis, L., del-Río-Portilla, Y., Arce, C., Ramos-Loyo, J.: Within-subject reliability and inter-session stability of EEG power and coherent activity in women evaluated monthly over nine months. Clin. Neurophysiol. 118(1), 9–21 (2007)
Das, S., Suganthan, P.N., Nagaratnam, P.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evolut. Comput. 15(1), 4–31 (2011)
Dmitriev, A., Al-harosh, M., Igor, S., Nikolaev, A.: The optimal stimulation mode and the number of averaging epochs selection for P300 detection. In: 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), pp. 91–94 (2018)
Dubois, D., Kerre, E., Mesiar, R., Prade, H.: Fuzzy Interval Analysis, Fundamentals of Fuzzy Sets, pp. 483–581. Springer, Berlin (2000)
Farwell, L.A., Donchin, E.: Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70(6), 510–523 (1998)
Garrett, D., Peterson, D.A., Anderson, C.W., Thaut, M.H.: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans. Neural Syst. Rehabilit. Eng. 11(2), 141–144 (2003)
Haghighatpanah, N., Amirfattahi, R., Abootalebi, V., Nazari, B.: A two stage single trial P300 detection algorithm based on independent component analysis and wavelet transforms. In: 19th Iranian Conference of Biomedical Engineering (ICBME), pp. 324–329. IEEE (2012)
Haghighatpanah, N., Amirfattahi, R., Abootalebi, V., Nazari, B.: A single channel-single trial P300 detection algorithm. In: 21st Iranian Conference on Electrical Engineering (ICEE), pp. 1–5. IEEE (2013)
Herman, P.A., Prasad, G., McGinnity, T.M.: Designing an interval type-2 fuzzy logic system for handling uncertainty effects in brain–computer interface classification of motor imagery induced EEG patterns. IEEE Trans. Fuzzy Syst. 25(1), 29–42 (2017)
Hoffmann, U., Vesin, J.M., Ebrahimi, T., Diserens, K.: An efficient P300-based brain–computer interface for disabled subjects. J. Neurosci. Methods 167(1), 115–125 (2008)
Hsu, H.T., Lee, W.K., Shyu, K.K., Yeh, T.K., Chang, C.Y., Lee, P.L.: Analyses of EEG oscillatory activities during slow and fast repetitive movements using Holo-Hilbert spectral analysis. IEEE Trans. Neural Syst. Rehabilit. Eng. 26(9), 1659–1668 (2018)
Iturrate, I., Antelis, J.M., Kubler, A., Minguez, J.: A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Trans. Robot. 25(3), 614–627 (2009)
Jones, E.G., Mendell, L.M.: Assessing the decade of the brain. Science 284, 739 (1999)
Kaper, M., Meinicke, P., Grossekathoefer, U., Lingner, T., Ritter, H.: BCI competition 2003-data set IIb: support vector machines for the P300 speller paradigm. IEEE Trans. Biomed. Eng. 51(6), 1073–1076 (2004)
Kar, R., Konar, A., Chakraborty, A., Nagar, A.K.: Detection of signaling pathways in human brain during arousal of specific emotion. In: International Joint Conference on Neural Networks (IJCNN), pp. 3950–3957 (2014)
Key, A.P.F., Dove, G.O., Maguire, M.J.: Linking brainwaves to the brain: an ERP primer. Dev. Neuropsychol. 27(2), 183–215 (2005)
Kübler, A., Furdea, A., Halder, S., Hammer, E.M., Nijboer, F., Kotchoubey, B.: A brain–computer interface controlled auditory event-related potential (P300) spelling system for locked-in patients. Ann. N. Y. Acad. Sci. 1157(1), 90–100 (2009)
Lahiri, R., Rakshit, P., Konar, A., Nagar, A.K.: Evolutionary approach for selection of optimal EEG electrode positions and features for classification of cognitive tasks. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4846–4853 (2016)
Li, K., Sankar, R., Arbel, Y., Donchin, E.: Single trial independent component analysis for P300 BCI system. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4035–4038. IEEE (2009)
Liew, V.K.: Which lag length selection criteria should we employ? Econ. Bull. 3(33), 1–9 (2004)
Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 4(2), R1 (2007)
Magee, R., Givigi, S.: A genetic algorithm for single-trial P300 detection with a low-cost EEG headset. In: 9th Annual IEEE International Systems Conference (SysCon), 2015, pp. 230–234. IEEE (2015)
Mandal, R., Halder, A., Bhowmik, P., Konar, A., Chakraborty, A., Nagar, A.K.: Uncertainty management in type-2 fuzzy face-space for emotion recognition. In: IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1902–1909. IEEE (2011)
Mendel, J.M., John, R.B.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)
Mezura-Montes, E., Reyes-Sierra, M., Coello, C.A.C.: Multi-objective optimization using differential evolution: a survey of the state-of-the-art. In: Chakraborty, U.K. (ed.) Advances in Differential Evolution, pp. 173–196. Springer, Berlin (2008)
Pfurtscheller, G., Zalaudek, K., Neuper, C.: Event-related beta synchronization after wrist, finger and thumb movement. Electroencephalogr. Clin. Neurophysiol. Electromyogr. Motor Control. 109(2), 154–160 (1998)
Piccione, F., Giorgi, F., Tonin, P., Priftis, K., Giove, S., Silvoni, S., Palmas, G., Beverina, F.: P300-based brain computer interface: reliability and performance in healthy and paralysed participants. Clin. Neurophysiol. 117(3), 531–537 (2006)
Polich, J., Ladish, C., Bloom, F.E.: P300 assessment of early Alzheimer’s disease. Clin. Neurophysiol. 77(3), 179–189 (1990)
Ramoser, H., Muller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabilit. Eng. 8(4), 441–446 (2000)
Rejer, I.: Genetic algorithms in EEG feature selection for the classification of movements of the left and right hand. In: Proceedings of the 8th International Conference on Computer Recognition Systems CORES, pp. 597–589 (2013)
Rosenfeld, J.P.: Applied psychophysiology and biofeedback of event-related potentials (brain waves): historical perspective, review, future directions. Biofeedback Self-Regul. 15(2), 99–119 (1990)
Saha, A., Konar, A., Chatterjee, A., Ralescu, A., Nagar, A.K.: EEG analysis for olfactory perceptual-ability measurement using a recurrent neural classifier. IEEE Trans. Hum. Mach. Syst. 44(6), 717–730 (2014)
Salimi-Khorshidi, G., Nasrabadi, A.M., Golpayegani, M.H.: Fusion of classic P300 detection methods’ inferences in a framework of fuzzy labels. Artif. Intell. Med. 44(3), 247–259 (2008)
Schroder, M., Bogdan, M., Hinterberger, T., Birbaumer, N.: Automated EEG feature selection for brain computer interfaces. In: First International IEEE EMBS Conference on Neural Engineering, pp. 626–629 (2003)
Seber, G.A.F., Lee, A.J.: Linear Regression Analysis. Wiley, Hoboken (2012)
Seltman, H.J.: Experimental Design and Analysis. Carnegie Mellon University, Pittsburgh (2012)
Smulders, F.T., Kenemans, J.L., Kok, A.: A comparison of different methods for estimating single-trial P300 latencies. Electroencephalogr. Clin. Neurophysiol. Evoked Potentials Sect. 92(2), 107–114 (1994)
Xie, S., Wu, Y., Zhang, Y., Zhang, J., Liu, C.: Single channel single trial P300 detection using extreme learning machine: compared with BPNN and SVM. In: International Joint Conference on Neural Networks (IJCNN), pp. 544–549. IEEE (2014)
Zhang, R., Xu, P., Chen, R., Li, F., Guo, L., Li, P., Zhang, T., Yao, D.: Predicting inter-session performance of SMR-based brain–computer interface using the spectral entropy of resting-state EEG. Brain Topogr. 28(5), 680–690 (2015)
Acknowledgements
The work reported in this article is financially supported by 'Cognitive Science Program' funded by University Grant Commission (UGC), India.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kar, R., Rakshit, P., Konar, A. et al. Uncertainty Management by Feature Space Tuning for Single-Trial P300 Detection. Int. J. Fuzzy Syst. 21, 916–929 (2019). https://doi.org/10.1007/s40815-018-00601-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-018-00601-x