Skip to main content
Log in

Evaluating Topological Vulnerability Based on Fuzzy Fractal Dimension

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Complex networks have been widely applied in many complex systems existed in nature and society because of its rapid development. Many methods have been proposed to evaluate the vulnerability of the complex networks because of the high security requirements of the network. In this paper, a novel method is proposed to evaluate network’s vulnerability, which is based on fuzzy fractal dimension and average edge betweenness. Fuzzy fractal dimension can reflect the dynamic structure and topological structure of complex network, which is important to the vulnerability of complex network. So this proposed method can overcome the shortcomings of previous works by replacing the key coefficient p by fuzzy fractal dimension. In order to show this proposed method’s accuracy and effectiveness, six USAir networks in different years are applied in this paper. Three common methods are used to compare the results with this proposed method, and the RB attack strategy is used to analyze the vulnerability of dynamic characteristic. The fuzzy fractal dimension of randomly selecting largest connected subset which is close to the initial fuzzy fractal dimension shows the reliability and stability of this proposed method. The vulnerability order obtained by this proposed method is more realistic, because the Pearson correlation coefficient r about this method equals to 0.9805, which shows a extremely strong correlation with the reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Albert, R., Albert, I., Nakarado, G.L.: Structural vulnerability of the north american power grid. Phys. Rev. E 69(2) (2004). https://doi.org/10.1103/PhysRevE.69.025103

  2. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002). https://doi.org/10.1103/RevModPhys.74.47

    Article  MathSciNet  MATH  Google Scholar 

  3. Ayhan, M.B., Aydin, M.E., Oztemel, E.: A multi-agent based approach for change management in manufacturing enterprises. J. Intell. Manuf. 26(5), 975–988 (2015). https://doi.org/10.1007/s10845-013-0794-2

    Article  Google Scholar 

  4. Bian, T., Zheng, H., Yin, L., Deng, Y.: Failure mode and effects analysis based on Dnumbers and topsis. Qual. Reliab. Eng. Int. Article ID: QRE2268 (2018). https://doi.org/10.1002/qre.2268

  5. Boccaletti, S., Buldu, J., Criado, R., Flores, J., Latora, V., Pello, J., Romance, M.: Multiscale vulnerability of complex networks. Chaos 17(4) (2007). https://doi.org/10.1063/1.2801687

  6. Bureau of transportation statistics. http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=292

  7. Carmona, C.J., Chrysostomou, C., Seker, H., del Jesus, M.J.: Fuzzy rules for describing subgroups from influenza a virus using a multi-objective evolutionary algorithm. Appl. Soft Comput. 13(8), 3439–3448 (2013). https://doi.org/10.1016/j.asoc.2013.04.011

    Article  Google Scholar 

  8. Castillo, O., Lizarraga, E., Soria, J., Melin, P., Valdez, F.: New approach using ant colony optimization with ant set partition for fuzzy control design applied to the ball and beam system. Inf. Sci. 294, 203–215 (2015). https://doi.org/10.1016/j.ins.2014.09.040

    Article  MathSciNet  Google Scholar 

  9. Castillo, O., Melin, P.: Automated mathematical modelling, simulation and behavior identification of robotic dynamic systems using a new fuzzy-fractal-genetic approach. Robot. Auton. Syst. 28(1), 19–30 (1999). https://doi.org/10.1016/s0921-8890(99)00026-3

    Article  Google Scholar 

  10. Castillo, O., Melin, P.: Hybrid intelligent systems for time series prediction using neural networks, fuzzy logic, and fractal theory. IEEE Trans. Neural Netw. 13(6), 1395–1408 (2002). https://doi.org/10.1109/tnn.2002.804316

    Article  Google Scholar 

  11. Castillo, O., Melin, P.: Optimization of type-2 fuzzy systems based on bio-inspired methods: a concise review. Inf. Sci. 205, 1–19 (2012). https://doi.org/10.1016/j.ins.2012.04.003

    Article  Google Scholar 

  12. Castillo, O., Melin, P., Pedrycz, W.: Design of interval type-2 fuzzy models through optimal granularity allocation. Appl. Soft Comput. 11(8), 5590–5601 (2011). https://doi.org/10.1016/j.asoc.2011.04.005

    Article  Google Scholar 

  13. Castillo, O., Neyoy, H., Soria, J., Melin, P., Valdez, F.: A new approach for dynamic fuzzy logic parameter tuning in ant colony optimization and its application in fuzzy control of a mobile robot. Appl. Soft Comput. 28, 150–159 (2015). https://doi.org/10.1016/j.asoc.2014.12.002

    Article  Google Scholar 

  14. Chan, K.Y., Engelke, U.: Varying spread fuzzy regression for affective quality estimation. IEEE Trans. Fuzzy Syst. 25(3), 594–613 (2017). https://doi.org/10.1109/tfuzz.2016.2566812

    Article  Google Scholar 

  15. Chan, K.Y., Lam, H.K., Dillon, T.S., Ling, S.H.: A stepwise-based fuzzy regression procedure for developing customer preference models in new product development. IEEE Trans. Fuzzy Syst. 23(5), 1728–1745 (2015). https://doi.org/10.1109/tfuzz.2014.2375911

    Article  Google Scholar 

  16. Chen, C.H., Lan, G.C., Hong, T.P., Lin, S.B.: Mining fuzzy temporal association rules by item lifespans. Appl. Soft Comput. 41, 265–274 (2016). https://doi.org/10.1016/j.asoc.2015.01.008

    Article  Google Scholar 

  17. Chou, C.C.: A generalized similarity measure for fuzzy numbers. J. Intell. Fuzzy Syst. 30(2), 1147–1155 (2016)

    Article  MATH  Google Scholar 

  18. Clough, J.R., Evans, T.S.: What is the dimension of citation space? Phys. Stat. Mech. Appl. 448, 235–247 (2016). https://doi.org/10.1016/j.physa.2015.12.053

    Article  MathSciNet  Google Scholar 

  19. Crisan, G.C., Pintea, C.M., Palade, V.: Emergency management using geographic information systems: application to the first romanian traveling salesman problem instance. Knowl. Inf. Syst. 50(1), 265–285 (2017). https://doi.org/10.1007/s10115-016-0938-8

    Article  Google Scholar 

  20. Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex networks. Phys. Rev. E 69(4) (2004). https://doi.org/10.1103/PhysRevE.69.045104

  21. Deng, X., Deng, Y.: D-AHP method with different credibility of information. Soft Comput. pp. Published online, https://doi.org/10.1007/s00500-017-2993-9(2018)

  22. Deng, X., Han, D., Dezert, J., Deng, Y., Shyr, Y.: Evidence combination from an evolutionary game theory perspective. IEEE Trans. Cybern. 46(9), 2070–2082 (2016)

    Article  Google Scholar 

  23. Deng, X., Jiang, W.: An evidential axiomatic design approach for decision making using the evaluation of belief structure satisfaction to uncertain target values. Int. J. Intell. Syst. 33(1), 15–32 (2018). https://doi.org/10.1002/int.21929

    Article  Google Scholar 

  24. Du, W.J., Zhang, J.G., An, X.L., Qin, S., Yu, J.N.: Outer synchronization between two coupled complex networks and its application in public traffic supernetwork. Discrete Dyn. Nat. Soc. p. 8 (2016). https://doi.org/10.1155/2016/8920764

  25. Du, W.J., Zhang, J.G., Li, Y.Z., Qin, S.: Synchronization between different networks with time-varying delay and its application in bilayer coupled public traffic network. Math. Probl. Eng. p. 11 (2016). https://doi.org/10.1155/2016/6498316

  26. Ekong, U., Lam, H.K., Xiao, B., Ouyang, G.X., Liu, H.B., Chan, K.Y., Ling, S.H.: Classification of epilepsy seizure phase using interval type-2 fuzzy support vector machines. Neurocomputing 199, 66–76 (2016). https://doi.org/10.1016/j.neucom.2016.03.033

    Article  Google Scholar 

  27. Gallos, L.K., Fefferman, N.H.: The effect of disease-induced mortality on structural network properties. Plos One 10(8), 17 (2015). https://doi.org/10.1371/journal.pone.0136704

    Article  Google Scholar 

  28. Gallos, L.K., Fefferman, N.H.: Simple and efficient self-healing strategy for damaged complex networks. Phys. Rev. E 92(5) (2015). https://doi.org/10.1103/PhysRevE.92.052806

  29. Gallos, L.K., Makse, H.A., Sigman, M.: A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks. Proc. Natl. Acad. Sci. U. S. A. 109(8), 2825–2830 (2012). https://doi.org/10.1073/pnas.1106612109

    Article  Google Scholar 

  30. Gallos, L.K., Potiguar, F.Q., Andrade, J.S., Makse, H.A.: Imdb network revisited: Unveiling fractal and modular properties from a typical small-world network. Plos One 8(6), 8 (2013). https://doi.org/10.1371/journal.pone.0066443

    Article  Google Scholar 

  31. Gao, J.X., Barzel, B., Barabasi, A.L.: Universal resilience patterns in complex networks. Nature 530(7590), 307–312 (2016). https://doi.org/10.1038/nature16948

    Article  Google Scholar 

  32. Gou, L., Wei, B., Sadiq, R., Sadiq, Y., Deng, Y.: Topological vulnerability evaluation model based on fractal dimension of complex networks. Plos One 11(1) (2016). https://doi.org/10.1371/journal.pone.0146896

  33. Hahn, K., Massopust, P.R., Prigarin, S.: A new method to measure complexity in binary or weighted networks and applications to functional connectivity in the human brain. Bmc Bioinform. 17, 18 (2016). https://doi.org/10.1186/s12859-016-0933-9

    Article  Google Scholar 

  34. Hausdorff, F.: Dimension and outer dimension. Mathematische Annalen 79, 157–179 (1919)

    Article  MATH  Google Scholar 

  35. Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65(5) (2002). https://doi.org/10.1103/PhysRevE.65.056109

  36. Holmgren, A.J.: Using graph models to analyze the vulnerability of electric power networks. Risk Anal. 26(4), 955–969 (2006). https://doi.org/10.1111/j.1539-6924.2006.00791.x

    Article  Google Scholar 

  37. Hong, T.P., Lee, Y.C., Wu, M.T.: An effective parallel approach for genetic-fuzzy data mining. Expert Syst. Appl. 41(2), 655–662 (2014). https://doi.org/10.1016/j.eswa.2013.07.090

    Article  Google Scholar 

  38. Huang, D.W., Yu, Z.G.: Dynamic-sensitive centrality of nodes in temporal networks. Sci. Rep. 7, 11 (2017). https://doi.org/10.1038/srep41454

    Article  Google Scholar 

  39. Jiang, W., Wang, S.: An uncertainty measure for interval-valued evidences. Int. J. Comput. Commun. Control 12(5), 631–644 (2017)

    Article  MathSciNet  Google Scholar 

  40. Jiang, W., Wei, B., Liu, X., Li, X., Zheng, H.: Intuitionistic fuzzy evidential power aggregation operator and its application in multiple criteria decision-making. Int. J. Syst. Sci. Published on line. https://doi.org/10.1002/int.21939(2018)

  41. Jiang, W., Wei, B., Liu, X., Li, X., Zheng, H.: Intuitionistic fuzzy power aggregation operator based on entropy and its application in decision making. Int. J. Intell. Syst. 33(1), 49–67 (2018). https://doi.org/10.1002/int.21939

    Article  Google Scholar 

  42. Kang, B., Chhipi-Shrestha, G., Deng, Y., Hewage, K., Sadiq, R.: Stable strategies analysis based on the utility of z-number in the evolutionary games. Appl. Mathe. Comput. (2017). https://doi.org/10.1016/j.amc.2017.12.006

  43. Lan, G.C., Hong, T.P., Lin, Y.H., Wang, S.L.: Fuzzy utility mining with upper-bound measure. Appl. Soft Comput. 30, 767–777 (2015). https://doi.org/10.1016/j.asoc.2015.01.055

    Article  Google Scholar 

  44. Liu, T., Deng, Y., Chan, F.: Evidential supplier selection based on DEMATEL and game theory. Int. J. Fuzzy Syst. https://doi.org/10.1007/s40815-017-0400-4(2017)

  45. Melin, P., Castillo, O.: An intelligent hybrid approach for industrial quality control combining neural networks, fuzzy logic and fractal theory. Inf. Sci. 177(7), 1543–1557 (2007). https://doi.org/10.1016/j.ins.2006.07.022

    Article  Google Scholar 

  46. Mishkovski, I., Biey, M., Kocarev, L.: Vulnerability of complex networks. Commun. Nonlinear Sci. Numer. Simul. 16(1), 341–349 (2011). https://doi.org/10.1016/j.cnsns.2010.03.018

    Article  MathSciNet  MATH  Google Scholar 

  47. Morone, F., Makse, H.A.: Influence maximization in complex networks through optimal percolation. Nature 524(7563), 65–U122 (2015). https://doi.org/10.1038/nature14604

    Article  Google Scholar 

  48. Newman, M.E.J.: The structure and function of complex networks. Siam Rev. 45(2), 167–256 (2003). https://doi.org/10.1137/s003614450342480

    Article  MathSciNet  MATH  Google Scholar 

  49. Paun, V.A., Paun, V.P.: Fracture surface evaluation of zircaloy-4. Mater. Plast. 53(2), 326–331 (2016)

    Google Scholar 

  50. Pedrycz, W.: From fuzzy data analysis and fuzzy regression to granular fuzzy data analysis. Fuzzy Sets Syst. 274, 12–17 (2015). https://doi.org/10.1016/j.fss.2014.04.017

    Article  MathSciNet  MATH  Google Scholar 

  51. Pedrycz, W.: From fuzzy models to granular fuzzy models. Int. J. Comput. Intell. Syst. 9, 35–42 (2016). https://doi.org/10.1080/18756891.2016.1180818

    Article  Google Scholar 

  52. Pedrycz, W., Bargiela, A.: Fuzzy fractal dimensions and fuzzy modeling. Inf. Sci. 153, 199–216 (2003). https://doi.org/10.1016/s0020-0255(03)00075-6

    Article  MATH  Google Scholar 

  53. Pedrycz, W., Jastrzebska, A., Homenda, W.: Design of fuzzy cognitive maps for modeling time series. IEEE Trans. Fuzzy Syst. 24(1), 120–130 (2016). https://doi.org/10.1109/tfuzz.2015.2428717

    Article  Google Scholar 

  54. Schich, M., Song, C.M., Ahn, Y.Y., Mirsky, A., Martino, M., Barabasi, A.L., Helbing, D.: A network framework of cultural history. Science 345(6196), 558–562 (2014). https://doi.org/10.1126/science.1240064

    Article  Google Scholar 

  55. Shanker, O.: Defining dimension of a complex network. Mod. Phys. Lett. B 21(6), 321–326 (2007). https://doi.org/10.1142/s0217984907012773

    Article  MATH  Google Scholar 

  56. Song, C.M., Gallos, L.K., Havlin, S., Makse, H.A.: How to calculate the fractal dimension of a complex network: the box covering algorithm. J. Stat. Mech-Theory Exp. p. 16 (2007). https://doi.org/10.1088/1742-5468/2007/03/p03006

  57. Song, C.M., Havlin, S., Makse, H.A.: Origins of fractality in the growth of complex networks. Nat. Phys. 2(4), 275–281 (2006). https://doi.org/10.1038/nphys266

    Article  Google Scholar 

  58. Uslan, V., Seker, H.: Quantitative prediction of peptide binding affinity by using hybrid fuzzy support vector regression. Appl. Comput. 43, 210–221 (2016). https://doi.org/10.1016/j.asoc.2016.01.024

    Google Scholar 

  59. Wang, J.: Robustness of complex networks with the local protection strategy against cascading failures. Saf. Sci. 53, 219–225 (2013). https://doi.org/10.1016/j.ssci.2012.09.011

    Article  Google Scholar 

  60. Wang, J.W., Rong, L.L.: Cascade-based attack vulnerability on the us power grid. Saf. Sci. 47(10), 1332–1336 (2009). https://doi.org/10.1016/j.ssci.2009.02.002

    Article  Google Scholar 

  61. Wang, Z., Xia, C.Y., Meloni, S., Zhou, C.S., Moreno, Y.: Impact of social punishment on cooperative behavior in complex networks. Sci. Rep. 3, 7 (2013). https://doi.org/10.1038/srep03055

    Google Scholar 

  62. Xu, H., Deng, Y.: Dependent evidence combination based on shearman coefficient and pearson coefficient. IEEE Access https://doi.org/10.1109/ACCESS.2017.2783320 (2018)

  63. Xu, S., Jiang, W., Deng, X., Shou, Y.: A modified physarum-inspired model for the user equilibrium traffic assignment problem. Appl. Math. Model. 55, 340–353 (2018). https://doi.org/10.1016/j.apm.2017.07.032

    Article  MathSciNet  Google Scholar 

  64. Yin, L., Deng, Y.: Measuring transferring similarity via local information. Phys. A: Stat. Mech. Appl. (2018). https://doi.org/10.1016/j.physa.2017.12.144

  65. Zadeh, L.: Fuzzy sets. Inf. Control evaluation Method Based 8(3), 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    MATH  Google Scholar 

  66. Zhang, R., Ashuri, B., Deng, Y.: A novel method for forecasting time series based on fuzzy logic and visibility graph. Adv. Data Anal. Classif. 11(4), 759–783 (2018). https://doi.org/10.1007/s11634-017-0300-3

    Article  MathSciNet  Google Scholar 

  67. Zhang, X., Feng, L., Berman, Y., Hu, N., Stanley, H.E.: Exacerbated vulnerability of coupled socio-economic risk in complex networks. Epl 116(1), 6 (2016). https://doi.org/10.1209/0295-5075/116/18001

    Google Scholar 

  68. Zhao, Z.Q., Yu, Z.G., Anh, V., Wu, J.Y., Han, G.S.: Protein folding kinetic order prediction from amino acid sequence based on horizontal visibility network. Curr. Bioinf. 11(2), 173–185 (2016). https://doi.org/10.2174/1574893611666160125221326

    Article  Google Scholar 

  69. Zheng, H., Deng, Y.: Evaluation method based on fuzzy relations between Dempster-Shafer belief structure. Int. J. Intell. Syst. (2017). https://doi.org/10.1002/int.21956

  70. Zheng, X., Deng, Y.: Dependence assessment in human reliability analysis based on evidence credibility decay model and iowa operator. Ann. Nucl. Energy 112, 673–684 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the reviewer’s suggestions and the editor’s encouragement. The work is partially supported by National Natural Science Foundation of China (Program No. 61671384, 61703338), Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2016JM6018), Project of Science and Technology Foundation, and Fundamental Research Funds for the Central Universities (Program No. 3102017OQD020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, T., Song, M. & Jiang, W. Evaluating Topological Vulnerability Based on Fuzzy Fractal Dimension. Int. J. Fuzzy Syst. 20, 1956–1967 (2018). https://doi.org/10.1007/s40815-018-0457-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0457-8

Keywords

Navigation