Skip to main content
Log in

Pneumatic Artificial Muscle-Driven Control Loading System (iFUZZY2017)

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

A control loading system (CLS) provides a force feel about the state of devices. In this paper, the technique for a pneumatic artificial muscle (PAM)-actuated control loading system is developed. The proposed PAM-based control loading system is made with a steel string fixed at one end and the other end connected to a control column, and a force feedback to an operator can be achieved according to the system state. In order to demonstrate the dynamic force feedback characteristics, a second-order mass-spring-damper model is used for the computed force, and the force control is implemented via the position-loop architecture. Moreover, due to the structure and parametric uncertainties of the designed control loading system, the adaptive fuzzy sliding mode controller are employed to improve the fidelity feeling of the force exerted on the control column. Benchmark tests compare the adaptive fuzzy sliding mode controller with other controllers. Results demonstrate the designed PAM-driven control loading system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Suzuki, Y., Kobayashi, M.: Air jet driven force feedback in virtual reality. IEEE Trans. Comput. Graph. Appl. 25(1), 44–47 (2005)

    Article  Google Scholar 

  2. Zheng, S., Huang, Q., Cong, D., J. Han, J.: Experiment and study of control loading system in a flight simulator based on RCP. In: Proceedings of the 2007 IEEE International Conference on Integration Technology Shenzhen, China, 2007, pp. 208–212

  3. Lu, Y., Wang, Y.L., Wang, Z.L., Liang, J.M.: Force-feeling simulation system of longitudinal control based on the electro-motive force servo. J. Syst. Simul. 15(4), 505–507 (2003)

    Google Scholar 

  4. Frisoli, A., Avizzano, C.A., Bergamasco, M.: Simulation of a manual gearshift with a 2-DOF force-feedback joystick. In: Proceedings IEEE 2001 ICRA, pp. 1364–1369 (2001)

  5. Fokker Control System: ECOL 8000 (Electric control loading technical document) (1998)

  6. Gerretsen, A., Mulder, M., van Paassen, M.M.: Comparison of position-loop, velocity-loop and force-loop based control loading architectures. In: AIAA Modeling and Simulation Technologies Conference and Exhibit, 2005, pp. 1–10

  7. Plettenburg, D.H.: Pneumatic actuators: a comparison of energy-to-mass ratios. In: Proceedings IEEE International Conference Rehabilitation Robots, 2005, pp. 545–549

  8. Li, Y., Sun, K., Tong, S.: Adaptive fuzzy robust fault-tolerant optimal control for nonlinear large-scale systems. IEEE Trans. Fuzzy Syst. (2018). https://doi.org/10.1109/TFUZZ.2017.2787128

    Google Scholar 

  9. Li, Y., Sun, K., Tong, S.: Observer-based adaptive fuzzy fault-tolerant optimal control for SISO nonlinear systems. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2017.2785801

    Google Scholar 

  10. Tong, S., Sun, K., Sui, S.: Observer-based adaptive fuzzy decentralized optimal control design for strict feedback nonlinear large-scale systems. IEEE Trans. Fuzzy Syst. 26(2), 569–584 (2018)

    Article  Google Scholar 

  11. Zhu, X.C., Tao, G.L., Yao, B., Cao, J.: Adaptive robust posture control of parallel manipulator driven by pneumatic artificial muscles with redundancy. IEEE/ASME Trans. Mechatron. 13, 441–450 (2008)

    Article  MATH  Google Scholar 

  12. Tondu, B.: Modelling of the McKibben artificial muscle: a review. J. Int. Mater. Syst. Struct. 23, 225–253 (2012)

    Article  Google Scholar 

  13. Lin, C.J., Lin, C.R., Yu, S.K., Chen, C.T.: Hysteresis modeling and tracking control for a dual pneumatic artificial muscle system using Prandtl–Ishlinskii model. Mechatronics 28, 35–45 (2015)

    Article  Google Scholar 

  14. Chou, C.P., Hannaford, B.: Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Trans. Robot. Autom. 12(1), 90–102 (1996)

    Article  Google Scholar 

  15. Tondu, B., Lopez, P.: Modeling and control of McKibben artificial muscle robot actuators. IEEE Control Syst. Mag. 20, 15–38 (2000)

    Google Scholar 

  16. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  17. Eker, I.: Sliding mode control with PID sliding surface and experimental application to an electromechanical plant. ISA Trans. 45(1), 109–118 (2006)

    Article  Google Scholar 

  18. Masumpoor, S., Yaghobi, H., Khanesar, M.A.: Adaptive sliding-mode type-2 neuro-fuzzy control of an induction motor. Expert Syst. Appl. 42, 6635–6647 (2015)

    Article  Google Scholar 

  19. Yu, W.S., Weng, C.C.: H∞ tracking adaptive fuzzy integral sliding mode control for parallel manipulators. Fuzzy Sets Syst. 248, 1–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cheng, K.H.: Adaptive B-spline-based fuzzy sliding-mode control for an auto-warehousing crane system. Appl. Soft Comput. 48, 476–490 (2016)

    Article  Google Scholar 

  21. Lakhekar, G.V., Waghmare, L.M.: Robust maneuvering of autonomous underwater vehicle: an adaptive fuzzy PI sliding mode control. Intell. Serv. Robot. 10, 1–18 (2017)

    Article  Google Scholar 

  22. Chen, J., Peng, Y., Han, W., Guo, M.: Adaptive fuzzy sliding mode control in PH neutralization process. Procedia Eng. 15, 954–958 (2011)

    Article  Google Scholar 

  23. Amer, A.F., Sallam, E.A., Elawady, W.M.: Adaptive fuzzy sliding mode control using supervisory fuzzy control for 3 DOF planar robot manipulators. Appl. Soft Comput. 11, 4943–4953 (2011)

    Article  Google Scholar 

  24. Roopaei, M., Zolghadri Jahromi, M.: Chattering-free fuzzy sliding mode control in MIMO uncertain systems. Nonlinear Anal. 71, 4430–4437 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Science and Technology of the Republic of China, Taiwan, for financially supporting this research under Contract Nos. MOST 103-2221-E-003 -011 and 104-2221-E-003-028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Yung Chen.

Additional information

Research supported by MOST Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CT., Wu, YC., Chen, FW. et al. Pneumatic Artificial Muscle-Driven Control Loading System (iFUZZY2017). Int. J. Fuzzy Syst. 20, 1779–1789 (2018). https://doi.org/10.1007/s40815-018-0507-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0507-2

Keywords

Navigation