Skip to main content

Advertisement

Log in

Comparing Two Novel Hybrid MRDM Approaches to Consumer Credit Scoring Under Uncertainty and Fuzzy Judgments

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In the recent years, various statistical and computational intelligence or machine learning techniques have contributed to the progress of automation or semiautomation for measuring consumer credit scoring in the banking sector. However, most of the Taiwanese commercial banks still rely on seasoned staffs’ judgments on making the final approvals or rejections. To enhance the understanding and transparency of a decision support system (or model) that can assist bank staffs on making their consumer credit loan decisions—while uncertainty exist—is of high business value. One of the promising approaches is multiple rule-based decision-making (MRDM), a subfield of the hybrid multiple criteria decision-making that leverages the advantages of machine learning, soft computing, and decision methods (or techniques). The MRDM approach reveals comprehensible logics (rules or patterns) that can be justified and compared with the existing knowledge of veterans to reinforce the confidence of their judgments. Therefore, in the present study, we propose and compare two MRDM approaches in assisting decision makers on the consumer credit loan evaluations. A set of historical data from a commercial bank in Taiwan is analyzed for illustrating the plausible pros and cons of the two approaches with discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Lessmann, S., Baesens, B., Seow, H.V., Thomas, L.C.: Benchmarking state-of-the-art classification algorithms for credit scoring: an update of re-search. Eur. J. Oper. Res. 247(1), 124–136 (2015)

    Article  MATH  Google Scholar 

  2. Hand, D.J., Henley, W.E.: Statistical classification methods in consumer credit scoring: a review. J. R. Stat. Soc. Ser A (Stat. Soc.) 160(3), 523–541 (1997)

    Article  Google Scholar 

  3. Sohn, S.Y., Kim, D.H., Yoon, J.H.: Technology credit scoring model with fuzzy logistic regression. Appl. Soft Comput. 43, 150–158 (2016)

    Article  Google Scholar 

  4. Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., Vanthienen, J.: Benchmarking state-of-the-art classification algorithms for credit scoring. J. Oper. Res. Soc. 54(6), 627–635 (2003)

    Article  MATH  Google Scholar 

  5. Saaty, T.L.: How to make a decision: the analytic hierarchy process. Eur. J. Oper. Res. 48(1), 9–26 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Saaty, T.L.: Decision making—the analytic hierarchy and network processes (AHP/ANP). J. Syst. Sci. Syst. Eng. 13(1), 1–35 (2004)

    Article  MathSciNet  Google Scholar 

  7. Wu, W., Kou, G., Peng, Y.: Group decision-making using improved mul-ti-criteria decision making methods for credit risk analysis. Filomat 30(15), 4135–4150 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ignatius, J., Hatami-Marbini, A., Rahman, A., Dhamotharan, L., Khoshnevis, P.: A fuzzy decision support system for credit scoring. Neural Comput. Appl. 29(10), 921–937 (2018)

    Article  Google Scholar 

  9. Zhu, X., Li, J., Wu, D., Wang, H., Liang, C.: Balancing accuracy, complexity and interpretability in consumer credit decision making: a C-TOPSIS classification approach. Knowl.-Based Syst. 52, 258–267 (2013)

    Article  Google Scholar 

  10. Shen, K.Y., Tzeng, G.H.: DRSA-based neuro-fuzzy inference systems for the financial performance prediction of commercial banks. Int. J. Fuzzy Syst. 16(2), 173–183 (2014)

    Google Scholar 

  11. Shen, K.Y., Tzeng, G.H.: A decision rule-based soft computing model for supporting financial performance improvement of the banking industry. Soft. Comput. 19(4), 859–874 (2015)

    Article  Google Scholar 

  12. Marqués, A.I., García, V., Sánchez, J.S.: On the suitability of resampling techniques for the class imbalance problem in credit scoring. J. Oper. Res. Soc. 64(7), 1060–1070 (2013)

    Article  Google Scholar 

  13. Louzada, F., Ara, A., Fernandes, G.B.: Classification methods applied to credit scoring: systematic review and overall comparison. Surv. Oper. Res. Manag. Sci. 21(2), 117–134 (2016)

    MathSciNet  Google Scholar 

  14. Thomas, L.C., Edelman, D.B., Crook, J.N.: Credit Scoring and its Applications. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    Book  MATH  Google Scholar 

  15. Blöchlinger, A., Leippold, M.: Economic benefit of powerful credit scoring. J. Bank. Finance 30(3), 851–873 (2006)

    Article  Google Scholar 

  16. Tzeng, G.H., Shen, K.Y.: New Concepts and Trends of Hybrid Multiple Criteria Decision Making. CRC Press, Taylor & Francis Group (2017). ISBN 978-1-4987-7708-7

    Book  MATH  Google Scholar 

  17. Pawlak, Z.: Rough sets. Int. J. Parallel Prog. 11(5), 341–356 (1982)

    MATH  Google Scholar 

  18. Pawlak, Z.: Rough set theory and its applications to data analysis. Cybern. Syst. 29(7), 661–688 (1998)

    Article  MATH  Google Scholar 

  19. Zadeh, L.A.: The role of fuzzy logic in the management of uncertainty in expert systems. Fuzzy Sets Syst. 11(1–3), 199–227 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tzeng, G.H., Huang, J.J.: Multiple Attribute Decision Making: Methods and Applications. CRC Press, Taylor & Francis Group, New York (2011). ISBN 978-1-4398-6157-8

    Book  MATH  Google Scholar 

  21. Zimmermann, H.J.: Fuzzy Sets, Decision Making, and Expert Systems, vol. 10. Springer, Dordrecht (1987)

    Book  Google Scholar 

  22. Sakai, H., Okuma, H., Nakata, M., Ślȩzak, D.: Stable rule extraction and decision making in rough non-deterministic information analysis. Int. J. Hybrid Intell. Syst 8(1), 41–57 (2011)

    Article  MATH  Google Scholar 

  23. Durand, D.: Risk Elements in Consumer Instalment Financing. National Bureau of Economic Research, New York (1941)

    Google Scholar 

  24. Greco, S., Matarazzo, B., Słowiński, R.: Rough set approach to multi-attribute choice and ranking problems. In: Making, Multiple Criteria Decision (ed.) Fandel G, Gal T, pp. 318–329. Springer, Berlin (1997)

    Google Scholar 

  25. Greco, S., Matarazzo, B., Słowiński, R.: Rough approximation of a preference relation by dominance relations. Eur. J. Oper. Res. 117(1), 63–83 (1999)

    Article  MATH  Google Scholar 

  26. Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multicriteria decision analysis. Eur. J. Oper. Res. 129(1), 1–47 (2001)

    Article  MATH  Google Scholar 

  27. Greco, S., Matarazzo, B., Słowiński, R.: Rough sets methodology for sorting problems in presence of multiple attributes and criteria. Eur. J. Oper. Res. 138(2), 247–259 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Greco, S., Matarazzo, B., Słowiński, R.: Decision rule approach. In: Greco, S., Ehrgott, M., Figueria, J. (eds.) Multiple Criteria Decision Analysis-State of the Art Surveys, pp. 497–552. Springer, New York (2016)

    Chapter  Google Scholar 

  29. Błaszczyński, J., Słowiński, R., Szeląg, M.: Sequential covering rule induction algorithm for variable consistency rough set approaches. Inf. Sci. 181(5), 987–1002 (2011)

    Article  MathSciNet  Google Scholar 

  30. Shen, K.Y., Tzeng, G.H.: A new approach and insightful financial diagnoses for the IT industry based on a hybrid MADM model. Knowl.-Based Syst. 85, 112–130 (2015)

    Article  Google Scholar 

  31. Liou, J.J., Tzeng, G.H.: A dominance-based rough set approach to customer behavior in the airline market. Inf. Sci. 180(11), 2230–2238 (2010)

    Article  Google Scholar 

  32. Greco, S., Ehrgott, M., Figueria, J. (eds.): Multiple Criteria Decision Analysis-State of the Art Surveys, 2nd edn. Springer, New York (2016)

    MATH  Google Scholar 

  33. Shen, K.Y., Yan, M.R., Tzeng, G.H.: Combining VIKOR-DANP model for glamor stock selection and stock performance improvement. Knowl.-Based Syst. 58, 86–97 (2014)

    Article  Google Scholar 

  34. Opricovic, S., Tzeng, G.H.: Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 156(2), 445–455 (2004)

    Article  MATH  Google Scholar 

  35. Shen, K.Y., Tzeng, G.H.: A novel bipolar MCDM model using rough sets and three-way decisions for decision aids. In: 2016 Joint 8th International Conference on Soft Computing and Intelligent Systems (SCIS) and 17th International Symposium on Advanced Intelligent Systems, pp. 53–58. IEEE (2016a)

  36. Shen, K.Y., Tzeng, G.H.: Contextual improvement planning by fuzzy-rough machine learning: a novel bipolar approach for business analytics. Int. J. Fuzzy Syst. 18(6), 940–955 (2016)

    Article  MathSciNet  Google Scholar 

  37. Hwang, C.L., Yoon, K.: Multiple attribute decision making: Methods and application. Lecture Notes in Economics and Mathematical Systems, vol. 186. Springer, New York (1981)

    Book  Google Scholar 

  38. Chen, S.J., Hwang, C.L.: Fuzzy multiple attribute decision making methods. In: Fuzzy Multiple Attribute Decision Making, pp. 289–486. Springer, Berlin(1992)

  39. Nakata, M., Sakai, H.: Lower and upper approximations in data tables containing possibilistic information. In: Transactions on Rough Sets VII, pp. 170–189. Springer, Berlin (2007)

  40. Sakai, H., Wu, M., Nakata, M.: Apriori-based rule generation in incomplete information databases and non-deterministic information systems. Fundam Inform 130(3), 343–376 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sakai, H.: (2016). Software tools for RNIA (Rough Non-Deterministic Information Analysis). http://www.mns.kyutech.ac.jp/~sakai/RNIA/

  42. Official website: https://www.dtreg.com/

  43. Shen, K.Y., Zavadska, E.K., Tzeng, G.H.: Updated discussions on “Hybrid multiple criteria decision making methods: A review of applications for sustainability issues”. Economic Research-Ekonomska Istraživanja, accepted (in press) (2018)

  44. Simon, H.A.: Bounded rationality in social science: today and tomorrow. Mind Soc. 1(1), 25–39 (2000)

    Article  Google Scholar 

  45. Atanassov, K.T.: Intuitionistic fuzzy sets. In: Intuitionistic Fuzzy Sets, pp. 1-137. Physica-Verlag HD (1999)

  46. Liu, P.: Special issue “Intuitionistic fuzzy theory and its application in economy, technology and management”. Technol. Econ. Dev. Econ. 22(3), 327–335 (2016). https://doi.org/10.3846/20294913.2016.1185047

    Article  Google Scholar 

Download references

Acknowledgements

A pilot study was conducted and reported at the IJCRS2017 conference in Poland (July/2017). The data and opinions from the senior staffs are appreciated. This study received financial supports from two grants under the two project numbers: (1) 104-2410-H-305-052-MY3 and (2) 105-2410-H-034-019-MY2, both from the Ministry of Science and Technology (MOST) of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwo-Hshiung Tzeng.

Appendices

Appendix: 1

The required steps to form DANP weights are found in [10, 16], which begins from obtained an initial average influence matrix A (in Table 15), and the required steps are as follows:

Table 15 Initial average influence matrix A

Step 1 Normalize A into a direct-influence matrix D

Step 2 Get total influence matrix T by \( \varvec{T} = \varvec{D} \times \left( {\varvec{I} - \varvec{D}} \right)^{ - 1} \)

Step 3 Transform T into the unweighted supermatrix W

Step 4 Normalized dimensional matrix \( \varvec{T}_{D}^{N} \)(Table 16)

Table 16 Normalized dimensional matrix \( \varvec{T}_{D}^{N} \)

Step 5 Adjust W by using \( \varvec{T}_{D}^{N} \) to become the DEMATEL adjusted supermatrix \( \varvec{W}^{*} \) (Table 17)

Table 17 DEMATEL-adjusted supermatrix \( \varvec{W}^{*} \)

Step 6 Obtain the final DANP supermatrix by multiplying with itself several times until it converges to \( \varvec{W}^{DANP} \) (the DANP influential weights are shown in Table 4)

Appendix: 2

See Table 18

Table 18 Top five positive and negative rules

Appendix: 3

See Tables 19, 20, 21

Table 19 Verbal expressions of the three DMs (parameters of fuzzy triangular function)
Table 20 Discretized values of the four applicants
Table 21 Verbal opinions for the four applicants (bipolar model)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, KY., Sakai, H. & Tzeng, GH. Comparing Two Novel Hybrid MRDM Approaches to Consumer Credit Scoring Under Uncertainty and Fuzzy Judgments. Int. J. Fuzzy Syst. 21, 194–212 (2019). https://doi.org/10.1007/s40815-018-0525-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0525-0

Keywords

Navigation