Skip to main content

Advertisement

Log in

Load Disturbance Observer-Based Complementary Sliding Mode Control for PMSM of the Mine Traction Electric Locomotive

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

For the permanent magnet synchronous motor (PMSM) control system of the mine traction electric locomotive (MTEL), the fluctuation of the load will lead to the resonance of the velocity of the MTEL and result in mechanical damage. To solve this problem, a disturbance observer-based complementary sliding mode controller (DOB-CSMC) design method is proposed in this paper. A mathematical model of PMSM is first established. Then, a disturbance observer is designed to reconstruct the load disturbances. In order to realize the static and dynamic tracking performance of the PMSM system, a saturation function-based complementary sliding mode controller is designed and the reconstructed disturbance is introduced into the controller to counteract the influence of external disturbance. Finally, the simulation and experimental results show that the DOB-CSMC method has a smaller overshoot and a shorter settling time compared with the traditional SMC method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li, B., Du, H., Li, W., et al.: Integrated dynamics control and energy efficiency optimization for overactuated electric vehicles. Asian J. Control 20(5), 1952–1966 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Calleja, C., Lpez-de-Heredia, A., Gaztanaga, H., Aldasoro, L., Nieva, T.: Validation of a modified direct-self-control strategy for PMSM in railway-traction applications. IEEE Trans. Ind. Electron. 63(8), 5143–5155 (2016)

    Google Scholar 

  3. Bolognani, S., Oboe, R., Zigliotto, M.: Sensorless full-digital PMSM drive with EKF estimation of speed and rotor position. IEEE Trans. Ind. Electron. 46(1), 184–191 (1999)

    Article  Google Scholar 

  4. Chen, Z.Q., Tomita, M., Doki, S., Okuma, S.: New adaptive sliding observers for position-and velocity-sensorless controls of brushless DC motors. IEEE Trans. Ind. Electron. 47(3), 582–591 (2000)

    Article  Google Scholar 

  5. Yi, Y., Vilathgamuwa, D.M., Rahman, M.A.: Implementation of an artificial neural network-based real time adaptive controller for an interior permanent magnet motor drive. IEEE Trans. Ind. Appl. 39(1), 96–104 (2003)

    Article  Google Scholar 

  6. Mocanu, R., Onea, A.: Robust control of permanent magnet synchronous machine based on passivity theory. Asian J. Control 20(5), 2034–2041 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang, M.S., Syamsiana, I.N., Lin, F.C.: Sensorless speed control of permanent magnet synchronous motors by neural network algorithm. Math. Probl. Eng. 2014, 1–7 (2014)

    Google Scholar 

  8. Ren, X., Li, D., Sun, G., et al.: Eso-based adaptive robust control of dual motor driving servo system. Asian J. Control 18(6), 2358–2365 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, H., Zhao, R., Cheng, F. et al.: Active disturbance rejection control for PMSM servo system applied in industrial sewing machines. In: International Conference on Electrical and Control Engineering IEEE Computer Society, 3249–3252 (2010)

  10. Zhang, B., Pi, Y., Luo, Y.: Fractional order sliding-mode control based on parameters auto-tuning for velocity control of permanent magnet synchronous motor. ISA Trans. 51(5), 649–656 (2012)

    Article  Google Scholar 

  11. Huang, J., Li, H., Chen, Y.Q., et al.: Robust position control of PMSM using fractional-order sliding mode controller. Abstr. Appl. Anal. 2012(4), 473–505 (2014)

    Google Scholar 

  12. Yang, J., Li, S., Yu, X.: Sliding mode control for systems with mismatched uncertainties via disturbance observer. IEEE Trans. Ind. Electron. 60(1), 160–169 (2013)

    Article  Google Scholar 

  13. Ginoya, D., Shendge, P.D.D., Phadke, S.B.: Sliding mode control for mismatched uncertain systems using an extended disturbance observer. IEEE Trans. Ind. Electron. 61(4), 1983–1993 (2014)

    Article  Google Scholar 

  14. Zhang, X., Sun, L., Zhao, K., Sun, L.: Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques. IEEE Trans. Power Electron. 28(3), 1358–1365 (2013)

    Article  Google Scholar 

  15. Xu, W., Jiang, Y., Mu, C.: Novel composite sliding mode control for PMSM drive system based on disturbance observer. IEEE Trans. Appl. Superconduct. 26(6), 12905–12910 (2016)

    Google Scholar 

  16. Chen, W.H.: Disturbance observer based control for nonlinear systems. IEEE/ ASME Trans. Mechatron. 9(4), 706–710 (2004)

    Article  Google Scholar 

  17. Aishwarya, A.A., Vrunda, A.J., Rahee, A.W., Godbole, A.A.: Speed control of PMSM using disturbance observer. IFAC-Papers OnLine 49(1), 308–314 (2016)

    Article  Google Scholar 

  18. Lu, X., Lin, H., Han, J.: Load disturbance observer-based control method for sensorless PMSM drive. IET Electric Power Appl. 10(8), 735–743 (2016)

    Article  Google Scholar 

  19. Zhang, J., Liu, X., Xia, Y., Zuo, Z., Wang, Y.: Disturbance observer-based integral sliding-mode control for systems with mismatched disturbances. IEEE Trans. Ind. Electron. 63(11), 7040–7049 (2016)

    Article  Google Scholar 

  20. Kokotovic, P.V.: The joy of feedback: nonlinear and adaptive. IEEE Control Syst. Mag. 12(1), 7–17 (1992)

    MathSciNet  Google Scholar 

  21. Chen, W.H.: Disturbance observer based control for nonlinear systems. IEEE/ASME Trans. Mechatron. 9(4), 706–710 (2004)

    Article  Google Scholar 

  22. Mezouar, A., Fellah, M.K., Hadjeri, S.: Adaptive sliding mode observer for induction motor using two-time-scale approach. Electric Power Syst. Res. 77(5–6), 604–618 (2007)

    Article  Google Scholar 

  23. Kuo, C.F.J., Hsu, C.H., Tsai, C.C.: Control of a permanent magnet synchronous motor with a fuzzy sliding-mode controller. Int. J. Adv. Manuf. Technol. 32(7–8), 757–763 (2007)

    Article  Google Scholar 

  24. Elmas, C., Ustun, O.: A hybrid controller for the speed control of a permanent magnet synchronous motor drive. Control Eng. Pract. 16(3), 260–270 (2008)

    Article  Google Scholar 

  25. El-Sousy, F.F.M.: Robust wavelet-neural-network sliding-mode control system for permanent magnet synchronous motor drive. IET Electric Power Appl. 5(1), 113–132 (2011)

    Article  Google Scholar 

  26. Lai, K., Shyu, K.K.: A novel motor drive design for incremental motion system via sliding-mode control method. IEEE Trans. Ind. Electron. 52(2), 499–507 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (61573133, 61573298) and Scientific Research Fund of Hunan Provincial Education Department (15B238).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiande Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Wang, H., Huang, S. et al. Load Disturbance Observer-Based Complementary Sliding Mode Control for PMSM of the Mine Traction Electric Locomotive. Int. J. Fuzzy Syst. 21, 1051–1058 (2019). https://doi.org/10.1007/s40815-018-0579-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-018-0579-z

Keywords

Navigation