Skip to main content
Log in

Exponentially Weighted Moving Average Control Chart Based on Normal Fuzzy Random Variables

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Exponentially weighted moving average (EWMA) chart is an alternative to Shewhart control charts and can serve as an effective tool for detection of shifts in small persistent process. Notably, existing methods rely on induced imprecise observations of a normal distribution with fuzzy mean and variance. Such techniques did not investigate the statistical properties relevant to a fuzzy EWMA. To overcome this shortcoming, employing a common notion of normal fuzzy random variable with fuzzy mean and non-fuzzy variance could be helpful. This paper first developed a notion of fuzzy EWMA statistic as a natural extension to the classical counterpart. Then, the concept of fuzzy EWMA control limit was introduced and discussed in cases where fuzzy mean and/or non-fuzzy variance was unknown parameters. A degree of violence was also employed to monitor the proposed fuzzy EWMA control chart. Potential applications of the proposed fuzzy EWMA chart were also demonstrated based on a real-life example. The advantages of the proposed method were also discussed in comparison with other existing fuzzy EWMA methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ban, A., Brandas, A., Coroianu, L., Negruiu, C., Nica, O.: Approximations of fuzzy numbers by trapezoidal fuzzy numbers preserving the ambiguity and value. Comput. Math. Appl. 61, 1379–1401 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Billingsley, P.: Probability and Measure. Wiley, New York (1979)

    MATH  Google Scholar 

  3. Bosc, P., Pivert, O.: About approximate inclusion and its axiomatization. Fuzzy Sets Syst. 157, 1438–1454 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cynthia, A., Lowry, W.H., Woodall, C.W.C., Steven, E.R.: A multivariate exponentially weighted moving average control chart. Technometrics 34, 46–53 (1992)

    Article  MATH  Google Scholar 

  5. Diamond, P., Kloeden, P.: Metric Spaces of Fuzzy Sets. World Scientific, Singapore (1994)

    MATH  Google Scholar 

  6. Erginel, N., Senturk, S.: Fuzzy EWMA and Fuzzy CUSUM Control Charts. Fuzzy Statistical Decision-Making, pp. 281–295. Springer, Berlin (2016)

    MATH  Google Scholar 

  7. Faraz, A., Shapiro, A.: An application of fuzzy random variables to control charts. Fuzzy Sets Syst. 161, 2684–2694 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feron, R.: Ensembles al\(\acute{e}\)atoires flous. C. R. Acad. Sci. Paris 282, 903–906 (1976)

    MathSciNet  MATH  Google Scholar 

  9. Gil, M.A., López-Díaz, M., Ralescu, D.A.: Overview on the development of fuzzy random variables. Fuzzy Sets Syst. 157, 2546–2557 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hesamian, G., Akbari, M.G., Yaghoobpoor, R.: Quality control process based on fuzzy random variables. IEEE Trans. Fuzzy Syst. (2018). https://doi.org/10.1109/TFUZZ.2018.2866811

    Google Scholar 

  11. Hesamian, G., Shams, M.: Parametric testing statistical hypotheses for fuzzy random variables. Soft Comput. 20, 1537–1548 (2016)

    Article  MATH  Google Scholar 

  12. Kruse, R., Meyer, K.D.: Statistics with Vague Data. Reidel, Amsterdam (1987)

    Book  MATH  Google Scholar 

  13. Kwakernaak, H.: Fuzzy random variables. Part I: definitions and theorems. Inf. Sci. 19, 1–15 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kwakernaak, H.: Fuzzy random variables. Part II: algorithms and examples for the discrete case. Inf. Sci. 17, 253–278 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lee, K.H.: First Course on Fuzzy Theory and Applications. Springer, Berlin (2005)

    MATH  Google Scholar 

  16. Liu, Y.K., Liu, B.: Fuzzy random variables: a scalar expected value operator. Fuzzy Optim. Decis. Mak. 2, 143–160 (2003)

    Article  MathSciNet  Google Scholar 

  17. Montgomery, D.C.: Introduction to Statistical Quality Control, 7th edn. Wiley, New York (2009)

    MATH  Google Scholar 

  18. Nasir, A., Riaz, M., Does, R.J.M.M.: An EWMA-type control chart for monitoring the process mean using auxiliary information. Commun. Stat. Theory Methods 43, 3485–3498 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Puri, M.L., Ralescu, D.A.: The concept of normality for fuzzy random variables. Ann. Probab. 13, 1373–1379 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Puri, M.L., Ralescu, D.A.: Fuzzy random variables. J. Math. Anal. Appl. 114, 409–422 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Roberts, S.W.: Control chart tests based on geometric moving averages. Technometrics 1, 239–250 (1959)

    Article  Google Scholar 

  22. Senturk, S., Erginel, N., Kaya, I., Kahraman, C.: Fuzzy exponentially weighted moving average control chart for univariate data with a real case application. Appl. Soft Comput. 22, 1–10 (2014)

    Article  Google Scholar 

  23. Shapiro, F.A.: Fuzzy random variables. Insur. J. Math. Econ. 44, 307–314 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shu, H.M., Nguyen, T.L., Hsu, B.M.: Fuzzy MaxGWMA chart for identifying abnormal variations of on-line manufacturing processes with imprecise information. Expert Syst. Appl. 41, 1342–1356 (2013)

    Article  Google Scholar 

  25. The Math-Works Inc.: MATLAB, The Language of Technical Computing. The Math-Works Inc., Natick (2009)

    Google Scholar 

  26. Wang, Y., Gao, Y., Karimi, H.R., Shen, H., Fang, Z.: Sliding mode control of fuzzy singularly perturbed systems with application to electric circuit. IEEE Trans. Syst. Man Cybern. 48, 1667–1675 (2018)

    Article  Google Scholar 

  27. Wang, Y., Karimi, H.R., Lam, H., Shen, H.: An improved result on exponential stabilization of sampled-data fuzzy systems. IEEE Trans. Fuzzy Syst. (2018). https://doi.org/10.1109/TFUZZ.2018.2852281

    Google Scholar 

  28. Wang, Y., Karimi, H.R., Shen, H., Fang, Z., Liu, M.: Fuzzy-model-based sliding mode control of nonlinear descriptor systems. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2018.2842920

    Google Scholar 

  29. Young, V.: Fuzzy subsethood. Fuzzy Sets Syst. 77, 371–384 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–356 (1965)

    Article  MATH  Google Scholar 

  31. Zavvar Sabegha, M.H., Mirzazadeha, A., Salehiana, S., Weber, G.W.: A literature review on the fuzzy control chart; classifications and analysis. Int. J. Supply Oper. Manag. 1, 167–189 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Hesamian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hesamian, G., Akbari, M.G. & Ranjbar, E. Exponentially Weighted Moving Average Control Chart Based on Normal Fuzzy Random Variables. Int. J. Fuzzy Syst. 21, 1187–1195 (2019). https://doi.org/10.1007/s40815-019-00610-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00610-4

Keywords