Skip to main content

Advertisement

Log in

Fuzzy Logic Control of SLMMC-Based SAPF Under Nonlinear Loads

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This work proposes fuzzy logic controller (FLC) for seven-level modular multilevel converter (SLMMC)-based shunt active power filter (SAPF) to reduce harmonics in source current. Half-bridge submodule is proposed for SLMMC due to its simple configuration and low conduction losses. An instantaneous real and reactive power (IPQ) method is proposed to extract reference currents. The multicarrier-based in-phase disposition (IPD) pulse width modulation method is proposed to control the switches in efficient approach. The performance of FLC in SLMMC and seven-level cascade H-bridge SAPF is verified in terms of harmonic reduction under nonlinear loads. The capacitor voltage balancing is achieved using the proposed FLC. The proposed work is simulated using MATLAB/Simulink software package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Akagi, H.: Trends in active power line conditioners. IEEE Trans. Power Electron. 9(3), 263–268 (1994)

    Article  Google Scholar 

  2. Akagi, H., Fujita, H.: A new power line conditioner for harmonic compensation in power systems. IEEE Trans. Power Deliv. 10(3), 1570–1575 (1995)

    Article  Google Scholar 

  3. Akagi, H.: Control strategy and site selection of a shunt active filter for damping of harmonic propagation power distribution systems. IEEE Trans. Power Deliv. 12(1), 354–363 (1997)

    Article  Google Scholar 

  4. Akagi, H., et al.: A shunt active filter based on voltage detection for harmonic termination of a radial power distribution line. IEEE Trans. Ind. Appl. 35(3), 638–645 (1999)

    Article  Google Scholar 

  5. Rodríguez, J., et al.: Multilevel inverters: a survey of topologies, controls, and applications. IEEE Trans. Ind. Electron. 49(4), 724–738 (2002)

    Article  Google Scholar 

  6. Perez, M.A., et al.: Circuit topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE Trans. Power Electron. 30(1), 4–7 (2015)

    Article  Google Scholar 

  7. Debnath, S., et al.: Operation, control, and applications of the modular multilevel converter: a review. IEEE Trans. Power Electron. 30(1), 37–53 (2015)

    Article  Google Scholar 

  8. Dekka, A., et al.: Evolution of topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE J. Emerg. Sel. Top. Power Electron. 5(4), 1631–1656 (2017)

    Article  Google Scholar 

  9. Massoud, A.M., et al.: Three-phase, three-wire, five-level cascaded shunt active filter for power conditioning, using two different space vector modulation techniques. IEEE Trans. Power Deliv. 22(4), 2349–2361 (2007)

    Article  Google Scholar 

  10. Feng, L., Wang, Y.: Modeling and resonance control of modular three-level shunt active power filter. IEEE Trans. Ind. Electron. 64(9), 7478–7486 (2017)

    Article  Google Scholar 

  11. Vodyakho, O., et al.: Novel direct current-space-vector control for shunt active power filters based on the three-level inverter. IEEE Trans. Power Electron. 23(4), 1668–1678 (2008)

    Article  Google Scholar 

  12. Li, B., Yang, R., et al.: Analysis of the phase-shifted carrier modulation for modular multilevel converters. IEEE Trans. Power Electron. 30(1), 297–310 (2015)

    Article  Google Scholar 

  13. Narasimhulu, V., et al.: Comparative simulation analysis of harmonics in line-line output voltage of multilevel inverters for different modulation indices. Int. J. Control Theory Appl. 10(5), 289–296 (2017)

    Google Scholar 

  14. Narasimhulu, V., et al.: State of art review of various control methods for cascade H-bridge 5-level inverter to mitigate harmonicsx. Int. J. Control Theory Appl. 10(28), 1–9 (2017)

    Google Scholar 

  15. Narasimhulu, V., et al.: Simulation analysis of switch controlled power filters for harmonic reduction. Int. J. Appl. Eng. Res. 11(11), 7597–7602 (2016). ISSN 0973-4562

  16. Popescu, M., Bitoleanu, A., Suru, V.: A DSP-based implementation of the pq theory in active power filtering under non ideal voltage conditions. IEEE Trans. Ind. Inform. 9(2), 880–889 (2013)

    Article  Google Scholar 

  17. Fabricio, E.L.L., et al.: Shunt compensator based on interconnected. IEEE Trans. Power Electron. 30(12), 6661–6671 (2015)

    Article  Google Scholar 

  18. Kumar, P., Mahajan, A.: Soft computing techniques for the control of an active power filter. IEEE Trans. Power Deliv. 24(1), 452–461 (2009)

    Article  Google Scholar 

  19. Areerak, K.-L., Areerak, K.-N.: The comparison study of harmonic detection methods for shunt active power filters. World Acad. Sci. Eng. Technol. Int. J. Energy Power Eng. 4(10), 243–248 (2010)

    MATH  Google Scholar 

  20. Bhende, C.N., et al.: TS-fuzzy-controlled active power filter for load compensation. IEEE Trans. Power Deliv. 21(3), 1459–1465 (2006)

    Article  Google Scholar 

  21. Zheng, Z., Wang, N.: Fuzzy PI compound control of PWM rectifiers with applications to marine vehicle electric propulsion system. Int. J. Fuzzy Syst. (2018). https://doi.org/10.1007/s40815-017-0394-y

    Article  MathSciNet  Google Scholar 

  22. Rathi, M.K., Prabha, N.R.: Interval Type-2 Fuzzy Logic Controller-Based Multi-level Shunt Active Power Line Conditioner for Harmonic Mitigation. Int. J. Fuzzy Syst. 1, 1 (2018). https://doi.org/10.1007/s40815-018-0547-7

    Article  Google Scholar 

  23. IEEE recommended practice and requirements for harmonic control in electric power systems. IEEE Std 519-2014 (revision of IEEE Std 519-1992). https://doi.org/10.1109/IEEESTD.2014.6826459

  24. Narasimhulu, V., et al.: Simulation analysis of 3-phase seven level cascaded H-bridge inverter using CBPWM for inductive loads. In: International Conference on SMART CITIES (ICSC’16), ISBN NO: 978-93-5258-424-6, organized by RGM College of Engineering & Technology, Nandyal, A.P., India

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Narasimhulu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narasimhulu, V., Ashok Kumar, D.V. & Sai Babu, C. Fuzzy Logic Control of SLMMC-Based SAPF Under Nonlinear Loads. Int. J. Fuzzy Syst. 22, 428–437 (2020). https://doi.org/10.1007/s40815-019-00622-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00622-0

Keywords