Skip to main content
Log in

Optimal Design of Adaptive Robust Control for Fuzzy Swarm Robot Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Motion control for an uncertain swarm robot system consisting of N robots is considered. The robots interact with each other through attractions and repulsions, which mimic some biological swarm systems. The uncertainty in the system is possibly fast time varying and bounded with unknown bound, which is assumed to be within a prescribed fuzzy set. On this premise, an adaptive robust control is proposed. Based on the proposed control, an optimal design problem under the fuzzy description of the uncertainty is formulated. This optimal problem is proven to be tractable, and the solution is unique. The solution to this optimal problem is expressed in the closed form. The performance of the resulting control is twofold. First, it assures the swarm robot system deterministic performances (uniform boundedness and uniform ultimate boundedness) regardless of the actual value of the uncertainty. Second, the minimization of a fuzzy-based performance index is assured. Therefore, the optimal design problem of the adaptive robust control for fuzzy swarm robot systems is completely solved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Okubo, A.: Dynamical aspects of animal grouping: swarms, schools, flocks, and herds. Adv. Biophys. 22(2), 1–94 (1986)

    Article  Google Scholar 

  2. Mogilner, A., Edelstein-Keshet, L., Bent, L., Spiros, A.: Mutual interactions, potentials, and individual distance in a social aggregation. J. Math. Biol. 47(4), 353–389 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antonelli, G., Chiaverini, S.: Kinematic control of platoons of autonomous vehicles. IEEE Trans. Robot. 22(6), 1285–1292 (2006)

    Article  Google Scholar 

  4. Gazi, V., Passino, K.M.: A class of attractions/repulsion functions for stable swarm aggregations. Int. J. Control 77(18), 1567–1579 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Parrish, J.K., Viscido, S.V., Grünbaum, D.: Self-organized fish schools: an examination of emergent properties. Biol. Bull. 202(3), 296–305 (2002)

    Article  Google Scholar 

  6. Dimarogonas, D.V., Kyriakopoulos, K.J.: Connectedness preserving distributed swarm aggregation for multiple kinematic robots. IEEE Trans. Robot. 24(5), 1213–1223 (2008)

    Article  Google Scholar 

  7. Gazi, V.: Swarm aggregations using artificial potentials and sliding-mode control. IEEE Trans. Robot. 21(6), 1208–1214 (2005)

    Article  Google Scholar 

  8. Chen, Y.H.: Artificial swarm system: boundedness, convergence, and control. J. Aerosp. Eng. 21(4), 288–293 (2008)

    Article  Google Scholar 

  9. Ranjbar-Sahraei, B., Shabaninia, F., Nemati, A., Stan, S.D.: A novel robust decentralized adaptive fuzzy control for swarm formation of multiagent systems. IEEE Trans. Ind. Electron. 59(8), 3124–3134 (2012)

    Article  Google Scholar 

  10. Gazi, V., Fidan, B., Marques, L., Ordonez, R.: Robot swarms: Dynamics and control. In: Kececi, E.F., Ceccarelli, M. (eds.) Mobile robots for dynamic environments, pp. 79–107. ASME, New York (2015)

    Google Scholar 

  11. Zhao, X., Chen, Y.H., Zhao, H.: Control design based on dead-zone and leakage adaptive laws for artificial swarm mechanical systems. Int. J. Control 90(5), 1077–1089 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rosenberg, R.M.: Analytical Dynamics of Discrete Systems. Olenum Press, New York (1977)

    Book  MATH  Google Scholar 

  13. Chen, Y.H.: Second-order constraints for equations of motion of constrained systems. IEEE/ASME Trans. Mechatron. 3(3), 240–248 (1998)

    Article  MathSciNet  Google Scholar 

  14. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  15. Udwadia, F.E., Wanichanon, T., Cho, H.: Methodology for satellite formation-keeping in the presence of system uncertainties. J. Guid. Control Dyn. 37(5), 1611–1624 (2014)

    Article  Google Scholar 

  16. Udwadia, F.E.: A new approach to stable optimal control of complex nonlinear dynamical systems. J. Appl. Mech. 81(3), 031001 (2014)

    Article  Google Scholar 

  17. Zhao, R., Chen, Y.H., Jiao, S.: Optimal robust control for constrained fuzzy dynamic systems: semi-infinite case. Int. J. Fuzzy Syst. 18(4), 557–569 (2016)

    Article  MathSciNet  Google Scholar 

  18. Chen, Y.H., Leitmann, G.: Robustness of uncertain systems in the absence of matching conditions. Int. J. Control 45(5), 1527–1542 (1987)

    Article  MATH  Google Scholar 

  19. Corless, M., Leitmann, G.: Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Trans. Autom. Control 26(5), 1139–1144 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hale, J.K.: Ordinary Differential Equation. Wiley, New York (1969)

    MATH  Google Scholar 

  21. Chen, Y.H.: Performance analysis of controlled uncertain systems. Dyn. Control 6(2), 131–142 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall, Englewood Cliffs (1995)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the referees for their helpful comments and suggestions.

Funding

The research is supported by National Natural Science Foundation of China (Grant No. 51705116), Science and Technology Major Project of Anhui (Grant No. 17030901036) and Fundamental Research Funds for the Central Universities (Grant Nos. JZ2018HGBZ0096/JZ2018HGTA0217/JZ2018HGTB0261).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomin Zhao.

Appendix

Appendix

We outline the fuzzy mathematics.

Membership function A function that the values assigned to the elements of the universal set fall within a specified range and indicate the membership grade of these elements in the set in question, is called membership function [22].

Fuzzy set A set \(\varOmega\) on the universe of discourse set X is a fuzzy set if the elements of set A are mapped into real numbers in [0, 1] by the membership function \(\mu _\varOmega : X\rightarrow [0,1].\)

\(\alpha\)-cut and strong\(\alpha\)-cut For a given fuzzy set \(\varOmega\) defined on X and any number \(\alpha \in [0,1]\), the \(\alpha\)-cut of fuzzy set \(\varOmega\) is defined as \({{}^{\alpha }}{\varOmega }=\{x \mid \mu _{\varOmega }(x)\ge \alpha \}\), and the strong \(\alpha\)-cut of fuzzy set \(\varOmega\) is defined as \({{}^{\alpha +}}{\varOmega }=\{x \mid \mu _{\varOmega }(x)> \alpha \}.\)

Fuzzy numbers To qualify as a fuzzy number, a fuzzy set \(\varOmega\) must possess the following properties: (i) \(\varOmega\) is a normal fuzzy set; (ii) \(\varOmega\) is convex; (iii) the support of \(\varOmega\) must be bounded; (iv) for each \(\alpha \in (0, 1]\), \({{}^{\alpha }}{\varOmega }\) is a closed interval in \(\mathbf{R}\).

Fuzzy arithmetic Let \(\varOmega _1\), \(\varOmega _2\) denote two fuzzy numbers, and \({{}^{\alpha }}{\varOmega _{1}}=[a_1, b_1]\), \({{}^{\alpha }}{\varOmega _{2}}=[a_2, b_2]\), \(a_1<b_1\), \(a_2<b_2\). Then, the fuzzy arithmetic is provided as follows:

$$\begin{aligned}&{{}^{\alpha }}{(\varOmega _1+\varOmega _2)}=[a_1+a_2, b_1+b_2], \end{aligned}$$
(95)
$$\begin{aligned}&{{}^{\alpha }}{(\varOmega _1-\varOmega _2)}=[a_1-b_2, b_1-a_2], \end{aligned}$$
(96)
$$\begin{aligned}&{{}^{\alpha }}{(\varOmega _1\cdot \varOmega _2)}=[\min (a_1a_2, a_1b_2, b_1a_2, b_1b_2), \nonumber \\&\qquad \max (a_1a_2, a_1b_2, b_1a_2, b_1b_2) ],\end{aligned}$$
(97)
$$\begin{aligned}&{{}^{\alpha }}{(\varOmega _1/\varOmega _2)}=[\min (a_1/a_2, a_1/b_2, b_1/a_2, b_1/b_2), \nonumber \\&\qquad \max (a_1/a_2, a_1/b_2, b_1/a_2, b_1/b_2)]. \end{aligned}$$
(98)

Decomposition theorem The fuzzy set \(\varTheta\) can be decomposed as

$$\begin{aligned} \varTheta =\bigcup _{\alpha \in [0,1]} {\tilde{\varTheta }}_{\alpha }, \end{aligned}$$
(99)

where \(\cup\) is the union of the fuzzy sets (i.e., sup over \(\alpha \in [0,1]\)), \({\tilde{\varTheta }}_{\alpha }\) is a special fuzzy set on the universe set X defined by the membership function \(\mu _{{\tilde{\varTheta }}_{\alpha }} = \alpha I(x)\), the function I(x) is defined as

$$I(x)=\left\{ \begin{array}{ll} 1, &{}\quad {\hbox {if}}\,x\in {{}^{\alpha }}{\varTheta }{}\\ 0,&{}\quad {\hbox {if}}\,x\in {X-{{}^{\alpha }}{\varTheta }{}}. \end{array} \right.$$
(100)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, F., Chen, YH. & Zhao, X. Optimal Design of Adaptive Robust Control for Fuzzy Swarm Robot Systems. Int. J. Fuzzy Syst. 21, 1059–1072 (2019). https://doi.org/10.1007/s40815-019-00626-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00626-w

Keywords

Navigation