Skip to main content
Log in

Stable Controller Design for T–S Fuzzy Control Systems with Piecewise Multi-linear Interpolations into Membership Functions

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper focuses on stabilization of T–S fuzzy control systems. We use the information of the premises of the T–S fuzzy control systems to reduce the conservativeness of the stabilization conditions. First, the membership functions (MFs) in the premises are approximated with their piecewise multi-linear interpolations. In this way, different types of MFs can be tackled in a unified approach. We use the errors between the T–S fuzzy systems and the interpolated systems as feedbacks to ensure that the errors tend to zero. Then, we design stable controllers for the fuzzy control systems based on the obtained systems with piecewise multi-linear interpolations and express our results as a group of linear matrix inequalities. It is proved that when the MFs are both single-variate and multi-variate, our results can stabilize the T–S fuzzy control systems. Finally, several simulation examples are utilized to illustrate the merits of the proposed method with both PDC and non-PDC in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Note that \(\varDelta g_{ij}\) are either \(\varDelta _{ij}\) or \(-\varDelta _{ij}\) due to the signum function.

References

  1. Bernal, M., Guerra, T.M., Kruszewski, A.: A membership-function-dependent approach for stability analysis and controller synthesis of Takagi–Sugeno models. Fuzzy Sets Syst. 160(19), 2776–2795 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chang, X.-H., Yang, G.-H.: Relaxed stabilization conditions for continuous-time Takagi–Sugeno fuzzy control systems. Inf. Sci. 180(17), 3273–3287 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, C.-L., Feng, G., Sun, D., Guan, X.-P.: \(h_\infty\) output feedback control of discrete-time fuzzy systems with application to chaos control. IEEE Trans. Fuzzy Syst. 13(4), 531–543 (2005)

    Article  Google Scholar 

  4. Chen, C.-L., Chen, P.-C., Chen, C.-K.: Analysis and design of fuzzy control system. Fuzzy Sets Syst. 57(2), 125–140 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ding, B.: Stabilization of Takagi–Sugeno model via nonparallel distributed compensation law. IEEE Trans. Fuzzy Syst. 18(1), 188–194 (2010)

    Article  Google Scholar 

  6. Ding, B., Huang, B.: Reformulation of LMI-based stabilisation conditions for non-linear systems in Takagi–Ssugeno’s form. Int. J. Syst. Sci. 39(5), 487–496 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dong, J., Yang, G.-H., Zhang, H.: Stability analysis of T–S fuzzy control systems by using set theory. IEEE Trans. Fuzzy Syst. 23(4), 827–841 (2015)

    Article  Google Scholar 

  8. Feng, G.: A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(5), 676–697 (2006)

    Article  Google Scholar 

  9. Guerra, T.M., Vermeiren, L.: LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi–Sugeno’s form. Automatica 40(5), 823–829 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. He, S.-Z., Tan, S., Feng-Lan, X., Wang, P.-Z.: Fuzzy self-tuning of PID controllers. Fuzzy Sets Syst. 56(1), 37–46 (1993)

    Article  MathSciNet  Google Scholar 

  11. Hong Yang, G., Dong, J.: \(h_{\infty }\) filtering for fuzzy singularly perturbed systems. IEEE Trans. Syst. Man Cybern. B Cybern. 38(5), 1371–1389 (2008)

    Article  Google Scholar 

  12. Hu, B.-G., Mann, G.K.I., Gosine, R.G.: A systematic study of fuzzy pid controllers-function-based evaluation approach. IEEE Trans. Fuzzy Syst. 9(5), 699–712 (2001)

    Article  Google Scholar 

  13. Johansson, M., Rantzer, A., Arzen, K.: Piecewise quadratic stability of fuzzy systems. IEEE Trans. Fuzzy Syst. 7(6), 713–722 (1999)

    Article  MATH  Google Scholar 

  14. Yao, T.H., Chung, K.C.: On lattices admitting unique lagrange interpolations. SIAM J. Numer. Anal. 14(4), 735–743 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khairy, M., Elshafei, A.L., Emara, H.M.: LMI based design of constrained fuzzy predictive control. Fuzzy Sets Syst. 161(6), 893–918 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kim, E., Lee, H.: New approaches to relaxed quadratic stability condition of fuzzy control systems. IEEE Trans. Fuzzy Syst. 8(5), 523–534 (2000)

    Article  Google Scholar 

  17. Lam, H.K.: Lmi-based stability analysis for fuzzy-model-based control systems using artificial T–S fuzzy model. IEEE Trans. Fuzzy Syst. 19(3), 505–513 (2011)

    Article  Google Scholar 

  18. Lam, H.K., Leung, F.H.F.: LMI-based stability and performance conditions for continuous-time nonlinear systems in Takagi–Sugeno’s form. IEEE Trans. Syst. Man Cybern. B Cybern. 37(5), 1396–1406 (2007)

    Article  Google Scholar 

  19. Lee, D.H., Joo, Y.H.: On the generalized local stability and local stabilization conditions for discrete-time Takagi–Sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 22(6), 1654–1668 (2014)

    Article  Google Scholar 

  20. Li, X., Lam, H.K., Liu, F., Zhao, X.: Stability and stabilization analysis of positive polynomial fuzzy systems with time delay considering piecewise membership functions. IEEE Trans. Fuzzy Syst. 25(4), 958–971 (2017)

    Article  Google Scholar 

  21. Lian, Z., He, Y., Zhang, C.-K., Min, W.: Stability analysis for T–S fuzzy systems with time-varying delay via free-matrix-based integral inequality. Int. J. Control Autom. Syst. 14(1), 21–28 (2016)

    Article  Google Scholar 

  22. Lin, C.-M., Li, H.-Y.: TSK fuzzy CMAC-based robust adaptive backstepping control for uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. 20(6), 1147–1154 (2012)

    Article  Google Scholar 

  23. Lin, T.-C., Lee, T.-Y.: Chaos synchronization of uncertain fractional-order chaotic systems with time delay based on adaptive fuzzy sliding mode control. IEEE Trans. Fuzzy Syst. 19(4), 623–635 (2011)

    Article  Google Scholar 

  24. Liu, L., Yin, Y., Wang, L., Bai, R.: Stability analysis for switched positive T–S fuzzy systems. Neurocomputing 173, 2009–2013 (2016)

    Article  Google Scholar 

  25. Mozelli, L.A., Palhares, R.M., Avellar, G.S.C.: A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems. Inf. Sci. 179(8), 1149–1162 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Palm, R.: Robust control by fuzzy sliding mode. Automatica 30(9), 1429–1437 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Peng, C., Yue, D., Fei, M.-R.: Relaxed stability and stabilization conditions of networked fuzzy control systems subject to asynchronous grades of membership. IEEE Trans. Fuzzy Syst. 22(5), 1101–1112 (2014)

    Article  Google Scholar 

  28. Sala, A., Arino, C.: Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: applications of Polya’s theorem. Fuzzy Sets Syst. 158(24), 2671–2686 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. SMC Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  30. Tanaka, K., Hori, T., Wang, H.O.: A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Trans. Fuzzy Syst. 11(4), 582–589 (2003)

    Article  Google Scholar 

  31. Tanaka, K., Sugeno, M.: Stability analysis and design of fuzzy control systems. Fuzzy Sets Syst. 45(2), 135–156 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York (2001)

    Book  Google Scholar 

  33. Tong, S., Sui, S., Li, Y.: Adaptive fuzzy decentralized output stabilization for stochastic nonlinear large-scale systems with unknown control directions. IEEE Trans. Fuzzy Syst. 22(5), 1365–1372 (2014)

    Article  Google Scholar 

  34. Wang, L., Feng, G.: Piecewise H infinity; controller design of discrete time fuzzy systems. IEEE Trans. Syst. Man Cybern. B Cybern. 34(1), 682–686 (2004)

    Article  Google Scholar 

  35. Wang, P., Li, N., Li, S.: Stability analysis for T–S fuzzy control systems with linear interpolations into membership functions. In: 2012 12th International Conference on Control Automation Robotics Vision (ICARCV), pp. 1749–1754 (2012)

  36. Wang, Y., Sun, Z. Q., Sun, F.C.: Stability analysis and control of discrete-time fuzzy systems: a fuzzy Lyapunov function approach. In: 5th Asian Control Conference, vol. 3, pp. 1855–1860 (2004)

  37. Yang, X., Ligang, W., Lam, H.-K., Xiaojie, S.: Stability and stabilization of discrete-time T–S fuzzy systems with stochastic perturbation and time-varying delay. IEEE Trans. Fuzzy Syst. 22(1), 124–138 (2014)

    Article  Google Scholar 

  38. Yang, Y., Zhou, C.: Adaptive fuzzy H infinity; stabilization for strict-feedback canonical nonlinear systems via backstepping and small-gain approach. IEEE Trans. Fuzzy Syst. 13(1), 104–114 (2005)

    Article  Google Scholar 

  39. Zhai, D., An-Yang, L., Dong, J., Zhang, Q.-L.: Stability analysis and state feedback control of continuous-time T–S fuzzy systems via anew switched fuzzy Lyapunov function approach. Appl. Math. Comput. 293, 586–599 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Zhang, H., Xie, X.: Relaxed stability conditions for continuous-time T–S fuzzy-control systems via augmented multi-indexed matrix approach. IEEE Trans. Fuzzy Syst. 19(3), 478–492 (2011)

    Article  Google Scholar 

  41. Zhang, T., Feng, G.: Rapid load following of an sofc power system via stable fuzzy predictive tracking controller. IEEE Trans. Fuzzy Syst. 17(2), 357–371 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61773260, 61590925).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Li.

Appendix

Appendix

1.1 Proof of Theorem 1 and Theorem 2

Proof

Let \(P_1\) and \(P_2\) be positive definite matrices. Then, we define

$$\begin{aligned} V(t)&= \begin{pmatrix} \hat{x}^T&e^T \end{pmatrix} {\hbox{diag}}(P_1,P_2) \begin{pmatrix} \hat{x}\\ e \end{pmatrix}\\&=\hat{x}^T P_1 \hat{x}+e^TP_2e, \end{aligned}$$

which is a Lyapunov function of the augmented system with state vector\(\begin{pmatrix} \hat{x}\\ e \end{pmatrix}\), where \(\hat{x}\) and e are short for \(\hat{x}(t)\) and e(t) as stated in Remark 1.

\(\dot{V}(t)\), the derivation of the Lyapunov function V(t), is formulated in (11).

$$\begin{aligned} \begin{aligned} \dot{V}&=\frac{{\hbox{d}}V}{{\hbox{d}}t}\\ &=\dot{\hat{x}}^T P_1 \hat{x}+\hat{x}^T P_1 \dot{\hat{x}} + \dot{e}^TP_2e + e^TP_2\dot{e}\\ &=\left( \sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}+B_{i}G_{j})\hat{x}\right. \\&\left. +\sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}+B_{i}G_{j})e-Ce\right) ^TP_{1}\hat{x}\\&+\hat{x}^{T}P_1\left( \sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}+B_{i}G_{j})\hat{x}\right. \\&\left. +\sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}+B_{i}G_{j})e-Ce\right) \\&+\left( \sum _{i=1}^{p}\sum _{j=1}^{q} (g_{ij}-\bar{g}_{ij}-\varDelta g_{ij})(A_i+B_iG_j)x-Ce\right) ^T P_2 e\\&+e^T P_2 \left( \sum _{i=1}^{p}\sum _{j=1}^{q} (g_{ij}-\bar{g}_{ij}-\varDelta g_{ij})(A_i+B_iG_j)x -Ce\right) \\ &=\hat{x}^T \left( \sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}+B_{i}G_{j})^{T}\right) P_{1}\hat{x}\\&+e^{T}\left( \sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}+B_{i}G_{j})^{T}-C^{T}\right) P_{1}\hat{x}\\&+\hat{x}^{T}P_{1}\left( \sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}+B_{i}G_{j})\right) \hat{x}\\&+\hat{x}^{T}P_{1}\left( \sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}+B_{i}G_{j})-C\right) e\\&+x^{T}\left( \sum _{i=1}^{p}\sum _{j=1}^{q}(g_{ij}-\bar{g}_{ij}-\varDelta g_{ij})(A_{i}+B_{i}G_{j})^{T}\right) P_{2}e\\&+e^{T}P_{2}\left( \sum _{i=1}^{p}\sum _{j=1}^{q}(g_{ij}-\bar{g}_{ij}-\varDelta g_{ij})(A_{i}+B_{i}G_{j})\right) x\\&+e^{T}C^{T}P_{2}e+eP_{2}Ce^{T}\\ &=\hat{x}^{T}\left( \sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}+B_{i}G_{j})^{T}P_{1}\right. \\&\left. +P_{1}\sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}+B_{i}G_{j})\right) \hat{x}\\&+e^{T}(C^{T}P_{2}+P_{2}C)e\\&+e^{T}\left( \sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}+B_{i}G_{j})^{T}-C^{T}\right) P_{1}\hat{x}\\ &=\hat{x}\left( \sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}+B_{i}G_{j})^{T}P_{1}\right. \\&\left. +P_{1}\sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}+B_{i}G_{j})\right) \hat{x}\\&+e^{T}\left( \sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}+B_{i}G_{j})^{T}-C^{T}\right) P_{1}\hat{x}\\&+\hat{x}P_{1}\left( \sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}+B_{i}G_{j})-C\right) e \\&+x^{T}\left( \sum _{i=1}^{p}\sum _{j=1}^{q}(g_{ij}-\bar{g}_{ij}-\varDelta g_{ij})(A_{i}+B_{i}G_{j})^{T}\right) P_{2}e\\&+e^{T}P_{2}(\left( \sum _{i=1}^{p}\sum _{j=1}^{q}(g_{ij}-\bar{g}_{ij}-\varDelta g_{ij})(A_{i}+B_{i}G_{j})\right) x\\&+e^{T}(C^{T}P_{2}+P_{2}C)e \end{aligned} \end{aligned}$$
(11)

As \(\varDelta g_{ij}=\varDelta _{ij}sgn(e^{T}P_{2}(A_{i}+B_{i}G_{j})x)\), then the last term but one of (11),

$$\begin{aligned} e^{T}P_{2}\left( \left( \sum _{i=1}^{p}\sum _{j=1}^{q}(g_{ij}-\bar{g}_{ij}-\varDelta g_{ij})(A_{i}+B_{i}G_{j})\right) x\right. , \end{aligned}$$

can be proved to be semi-negative definite as shown in (12).

$$\begin{aligned}&e^{T}P_{2}\left( \left( \sum _{i=1}^{p}\sum _{j=1}^{q}(g_{ij}-\bar{g}_{ij}-\varDelta g_{ij})(A_{i}+B_{i}G_{j})\right) x\right. \\&\quad \le \sum _{i=1}^{p}\sum _{j=1}^{q}|g_{ij}-\bar{g}_{ij}|\cdot |e^{T}P_{2}(A_{i}+B_{i}G_{j}))x|\\&\qquad -\sum _{i=1}^{p}\sum _{j=1}^{q}e^{T}P_{2}\varDelta g_{ij}(A_{i}+B_{i}G_{j}))x\\&\quad =\sum _{i=1}^{p}\sum _{j=1}^{q}|g_{ij}-\bar{g}_{ij}|\cdot |e^{T}P_{2}(A_{i}+B_{i}G_{j}))x|\\&\qquad -\sum _{i=1}^{p}\sum _{j=1}^{q}\varDelta _{ij}sgn(e^{T}P_{2}(A_{i}+B_{i}G_{j})x)(e^{T}P_{2}(A_{i}+B_{i}G_{j})x)\\&\quad =\sum _{i=1}^{p}\sum _{j=1}^{q}(|g_{ij}-\bar{g}_{ij}|-\varDelta g_{ij})|e^{T}P_{2}(A_{i}+B_{i}G_{j}))x|\\&\quad \le 0. \end{aligned}$$
(12)

Let \(z=P_{1}e\), \(\hat{z}=P_{1} \hat{x}\), \(C=-P_{1}\), \(P_{2}=\gamma P_{1}\) and \(X=P_{1}^{-1}\). Utilizing (11) and (12), we can obtain an estimation of the upper bound of \(\dot{V}\), which is deduced in (13) in detail.

$$\begin{aligned} \dot{V} \le&\hat{x}\left( \sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}+B_{i}G_{j})^{T}P_{1}\right. \\&\left. +\,P_{1}\sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}+B_{i}G_{j})\right) \hat{x}\\&+\,e^{T}(-2\gamma P_{1})e+e^{T}\left( \sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}+B_{i}G_{j})^{T}+P_{1}^{T}\right) P_{1}\hat{x}\\&+\hat{x}P_{1}\left( \sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}+B_{i}G_{j})+P_{1}\right) e\\ &=\hat{z}^{T}X\left( \sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}+B_{i}G_{j})^{T}X^{-1}\right. \\&\left. +X^{-1}\sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}+B_{i}G_{j})\right) X\hat{z}\\&+z^{T}X(-2\gamma X^{-2})Xz\\&+\,z^{T}X\left( \sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}+B_{i}G_{j})^{T}+X^{-1}\right) X^{-1}X\hat{z}\\&+\hat{z}XX^{-1}\left( \sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}+B_{i}G_{j})+X^{-1}\right) Xz\\ &=\hat{z}^{T}\sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(XA_{i}^{T}+A_{i}X+B_{i}N{j}+N_{j}^{T}B_{i}^{T})\hat{z}+(-2\gamma z^{T}z)\\&+z^{T}\sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(XA_{i}^{T}+{N_{j}^{T}B_{i}^{T}}+I)\hat{z}\\&+\hat{z}^{T}\sum _{i=1}^{p}\sum _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(A_{i}X+B_{i}N_{j})z\\ &=\begin{pmatrix} \hat{z}\\ z \end{pmatrix}^{T} \begin{pmatrix} \sum \limits _{i=1}^{p}\sum \limits _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij}) (\begin{array}{c}XA_{i}^{T}+A_{i}X+\\ B_{i}N_{j}+N_{j}^{T}B_{i}^{T}\end{array})&{}*\\ \sum \limits _{i=1}^{p}\sum \limits _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(XA_{i}^{T}+N_{j}^{T}B_{i}^{T})+I&{}-2\gamma I \end{pmatrix} \begin{pmatrix} \hat{z}\\ z \end{pmatrix} \end{aligned}$$
(13)

As a result, \(\dot{V}< 0\) if

$$\begin{aligned} \begin{pmatrix} \sum \limits _{i=1}^{p}\sum \limits _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij}) \left( \begin{array}{c}XA_{i}^{T}+A_{i}X+\\ B_{i}N_{j}+N_{j}^{T}B_{i}^{T}\end{array}\right) &{}*\\ \sum \limits _{i=1}^{p}\sum \limits _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij})(XA_{i}^{T}+N_{j}^{T}B_{i}^{T})+I&{}-2\gamma I \end{pmatrix}<0 \end{aligned}$$
(14)

at every points of state vector x. Notice that (14) is equivalent to

$$\begin{aligned} \sum \limits _{i=1}^{p}\sum \limits _{j=1}^{q}(\bar{g}_{ij}+\varDelta g_{ij}) \begin{pmatrix} XA_{i}^{T}+A_{i}X+\\ B_{i}N_{j}+N_{j}^{T}B_{i}^{T}&{}*\\ XA_{i}^{T}+N_{j}^{T}B_{i}^{T}&{}0 \end{pmatrix} < \begin{pmatrix} 0&{}*\\ I&{}-2\gamma I \end{pmatrix}. \end{aligned}$$
(15)

In (15), the left side is a linear combination of some matrices, where \(\bar{g}_{ij}+\varDelta g_{ij}\) are piecewise multi-linear functions. According to Lemma 1, (15) holds at every point if and only if it is valid at all linear interpolation end points. As a consequence, the T–S fuzzy control system (3) is stabilized if (8) is valid at every interpolation endpoints. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Li, N. Stable Controller Design for T–S Fuzzy Control Systems with Piecewise Multi-linear Interpolations into Membership Functions. Int. J. Fuzzy Syst. 21, 1585–1596 (2019). https://doi.org/10.1007/s40815-019-00665-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00665-3

Keywords

Navigation