Skip to main content

Advertisement

Log in

Novel Adaptive Kalman Filter with Fuzzy Neural Network for Trajectory Estimation System

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The objective of this paper presents a novel trajectory estimation (TE) system for mitigating the measurement noise and the undulation for the implementation of the touch interface. The methodology is based on an adaptive Kalman filter with a fuzzy neural network (FNN). The FNN is implemented as an artificial intelligence decision maker to regulate the smoothness of the output estimation. In real time, the FNN adaptively configures the filtering performance of the Kalman filter by analyzing the trajectory using the Fourier spectrum and the kinematic data. The result of this research is demonstrated on the touch interface that is implemented using the IR camera sensing method, and the proposed TE system is embedded to a coordinate processing module that converts the raw touch coordinates into the USB human interface device multi-touch protocol. A 70-inch projector screen is set up for the experiment, and the touch trajectories are tested with various magnitudes of measurement noise. The significance of the proposed TE system is demonstrated by showing the tracking delay and the distortion of the filtered trajectory are adaptively reduced. As the magnitude of the measurement noise increases, the proposed TE system detects the unwanted high-frequency component and decreases the filtering gain to stabilize the smoothness of the output trajectory. In conclusion, when compared to the recent researches, the proposed TE system shows lower tracking error and tolerates high magnitude of randomly appeared noise on the touch interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Miyamoto, M., Hamaguchi, M., Nagao, A.: A 143 × 81 mutual-capacitance touch-sensing analog front-end with parallel drive and differential sensing architecture. IEEE J. Solid-State Circuits 50(1), 335–343 (2015). https://doi.org/10.1109/JSSC.2014.2364092

    Article  Google Scholar 

  2. Aguilar, R.N., Meijer, G.C.M.: Fast interface electronics for a resistive touch screen. Proc. IEEE Sens. 2, 1360–1363 (2002). https://doi.org/10.1109/ICSENS.2002.1037318

    Article  Google Scholar 

  3. Schöning, J., Hook, J., Bartindale, T.: Building interactive multi-touch surfaces. In: Müller-Tomfelde, C. (ed.) Tabletops—Horizontal Interactive Displays. Human–Computer Interaction Series. Springer, London (2010). https://doi.org/10.1007/978-1-84996-113-4_2

    Google Scholar 

  4. Wei, Z., et al.: The design of infrared touch screen based on MCU. In: 2011 IEEE International Conference on Information and Automation, Shenzhen, pp. 485–489 (2011). https://doi.org/10.1109/ICINFA.2011.5949041

  5. Liang, J., Lin, K., Chen, H., Wang, W.: Turn any display into a touch screen using infrared optical technique. IEEE Access 6, 13033–13040 (2018). https://doi.org/10.1109/ACCESS.2018.2812756

    Article  Google Scholar 

  6. Moeller, J., Kerne, A.: Zero touch: an optical multi-touch and free-air interaction architecture. In: CHI’12, pp. 2165–2174 (2012). https://doi.org/10.1145/2207676.2208368

  7. Han, J.Y.: Low-cost multi-touch sensing through frustrated total internal reflection. In: UIST, pp. 115–118 (2005). https://doi.org/10.1145/1095034.1095054

  8. Hu, J., Li, G., Xie, X., Lv, Z., Wang, Z.: Bare-fingers touch detection by the button’s distortion in a projector–camera system. IEEE Trans. Circuits Syst. Video Technol. 24(4), 566–575 (2014). https://doi.org/10.1109/TCSVT.2013.2280088

    Article  Google Scholar 

  9. Li, B., Wei, T., Wei, X., Wang, J., Liu, W., Zheng, R.: A touch prediction and window sensing strategy for low-power and low-cost capacitive multitouch screen systems. J. Display Technol. 12(6), 646–657 (2016). https://doi.org/10.1109/JDT.2016.2517094

    Article  Google Scholar 

  10. Ko, S., et al.: Low noise capacitive sensor for multi-touch mobile handset’s applications. In: 2010 IEEE Asian Solid-State Circuits Conference, Beijing, pp. 1–4 (2010). https://doi.org/10.1109/ASSCC.2010.5716570

  11. Wang, J., Chuang, F.: An accelerometer-based digital pen with a trajectory recognition algorithm for handwritten digit and gesture recognition. IEEE Trans. Ind. Electron. 59(7), 2998–3007 (2012). https://doi.org/10.1109/TIE.2011.2167895

    Article  Google Scholar 

  12. Zhang, Z., Li, J., Li, M.: A smooth tracking algorithm for capacitive touch panels. In: International Conference on Communication and Electronic Information Engineering (2017). https://doi.org/10.2991/ceie-16.2017.73

  13. Chui, C.K., Chen, G.: Kalman Filtering with Real-Time Applications. Springer, Berlin (2009). https://doi.org/10.1007/978-3-540-87849-0

    MATH  Google Scholar 

  14. Sung, T.Y., Hu, Y.H.: Parallel VLSI implementation of the Kalman filter. IEEE Trans. Aerosp. Electron. Syst. AES 23, 215–224 (1987). https://doi.org/10.1109/TAES.1987.313375

    Article  Google Scholar 

  15. Lin, C.L., et al.: Tracking touched trajectory on capacitive touch panels using an adjustable weighted prediction covariance matrix. IEEE Trans. Ind. Electron. 64(6), 4910–4916 (2017). https://doi.org/10.1109/TIE.2017.2669887

    Article  Google Scholar 

  16. Lin, C.L., Chang, Y.M., Hung, C.C., et al.: Position estimation and smooth tracking with a fuzzy-logic-based adaptive strong tracking Kalman filter for capacitive touch panels. IEEE Trans. Ind. Electron. 62(8), 5097–5108 (2015). https://doi.org/10.1109/TIE.2015.2396874

    Article  Google Scholar 

  17. Lin, C.L., Chang, Y.M., Chen, H.S., et al.: Position tracking based on particle filter for self-capacitance single-touch screen panels. J. Display Technol. 11(2), 165–169 (2015). https://doi.org/10.1109/JDT.2014.2363296

    Article  Google Scholar 

  18. Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybernet. 23, 665–684 (1993). https://doi.org/10.1109/21.256541

    Article  Google Scholar 

  19. Nõmm, S., Toomela, A.: An alternative approach to measure quantity and smoothness of the human limb motions. Est. J. Eng. 19(4), 298–308 (2013). https://doi.org/10.3176/eng.2013.4.05

    Article  Google Scholar 

  20. Hogan, N., Sternad, D.: Sensitivity of smoothness measures to movement duration amplitude and arrests. J. Mot. Behav. 41(6), 529–534 (2009). https://doi.org/10.3200/35-09-004-RC

    Article  Google Scholar 

  21. Balasubramanian, S., Melendez-Calderon, A., Burdet, E.: A robust and sensitive metric for quantifying movement smoothness. IEEE Trans. Biomed. Eng. 59(8), 2126–2136 (2012). https://doi.org/10.1109/TBME.2011.2179545

    Article  Google Scholar 

  22. Balasubramanian, S., Melendez-Calderon, A., Roby-Brami, A., Burdet, E.: On the analysis of movement smoothness. J. Neuroeng. Rehabil. 12(1), 112 (2015). https://doi.org/10.1186/s12984-015-0090-9

    Article  Google Scholar 

  23. Nauk, D., Kruse, R.: Neuro-fuzzy systems for function approximation. Fuzzy Sets Syst. 101(2), 261–271 (1999). https://doi.org/10.1016/S0165-0114(98)00169-9

    Article  MathSciNet  MATH  Google Scholar 

  24. Hajek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998). https://doi.org/10.1007/978-94-011-5300-3

    Book  MATH  Google Scholar 

  25. Chao, C.T., Teng, C.C.: A fuzzy neural network based extended Kalman filter. Int. J. Syst. Sci. 27(3), 333–339 (1996). https://doi.org/10.1080/00207729608929221

    Article  MATH  Google Scholar 

  26. Chen, C.L.P., Liu, Y., Wen, G.: Fuzzy neural network-based adaptive control for a class of uncertain nonlinear stochastic systems. IEEE Trans. Cybern. 44(5), 583–593 (2014). https://doi.org/10.1109/TCYB.2013.2262935

    Article  Google Scholar 

  27. Sun, K., Mou, S., Qiu, J., Wang, T., Gao, H.: Adaptive fuzzy control for non-triangular structural stochastic switched nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. (2018). https://doi.org/10.1109/TFUZZ.2018.2883374

    Google Scholar 

  28. Qiu, J., Sun, K., Wang, T., Gao, H.: Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2895560

    Google Scholar 

  29. Sung, T.Y., Hsin, H.C., et al.: Low-power and high-speed CORDIC-based split-radix FFT processor for OFDM systems. Digit. Signal Prog. 20(2), 511–527 (2010). https://doi.org/10.1016/j.dsp.2009.08.008

    Article  Google Scholar 

  30. Lin, H.C.: Inter-harmonic identification using group-harmonic weighting approach based on the FFT. IEEE Trans. Power Electron. 23(3), 1309–1319 (2008). https://doi.org/10.1109/IECON.2007.4459961

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tze-Yun Sung.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CI., Chen, GD., Sung, TY. et al. Novel Adaptive Kalman Filter with Fuzzy Neural Network for Trajectory Estimation System. Int. J. Fuzzy Syst. 21, 1649–1660 (2019). https://doi.org/10.1007/s40815-019-00686-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00686-y

Keywords

Navigation