Skip to main content
Log in

Extended Pythagorean Fuzzy TOPSIS Method Based on Similarity Measure for Sustainable Recycling Partner Selection

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Recently, the organizations have concentrated on sustainability development and introduced several strategies for sustainability due to government policies, society concern, environmental impacts and needs of economy. Uncertainty commonly occurred in the sustainability development. Pythagorean fuzzy sets (PFSs), an extension of IFSs, have been demonstrated as an extremely valuable tool to tackle the uncertainty and ambiguity arisen in many practical situations. Thus, the proposed study focuses under Pythagorean fuzzy environment. In the present study, an approach is developed on the basis of Pythagorean fuzzy sets and Technique for Order Preference by means of Similarity to Ideal Solution method for the purpose of solving sustainable recycling partner selection problems with completely unknown decision experts and criteria weights. To calculate criteria weights, new similarity measure based on trigonometric function for PFSs is developed. Aiming at showing the way our approach can be effectively used to evaluate the realistic multi-criteria decision making problems, we carry out a case study of sustainable recycling partner selection problem. In addition, the results obtained from the proposed method are compared to those of some presently existing methods to validate the proposed method. The analytical results confirm the proficiency and reasonableness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Seuring, S., Müller, M.: From a literature review to a conceptual framework for sustainable supply chain management. J. Clean. Prod. 16(15), 1699–1710 (2008). https://doi.org/10.1016/j.jclepro.2008.04.020

    Article  Google Scholar 

  2. Srivastava, S.K.: Green supply-chain management: a state-of-the-art literature review. Int. J. Manag. Rev. 9(1), 53–80 (2007). https://doi.org/10.1111/j.1468-2370.2007.00202.x

    Article  Google Scholar 

  3. Ahi, P., Searcy, C.: A comparative literature analysis of definitions for green and sustainable supply chain management. J. Clean. Prod. 52, 329–341 (2013). https://doi.org/10.1016/j.jclepro.2013.02.018

    Article  Google Scholar 

  4. Hashemi, S.H., Karimi, A., Tavana, M.: An integrated green supplier selection approach with analytic network process and improved Grey relational analysis. Int. J. Prod. Econ. 159, 178–191 (2015). https://doi.org/10.1016/j.ijpe.2014.09.027

    Article  Google Scholar 

  5. Brandenburg, M., Govindan, K., Sarkis, J., Seuring, S.: Quantitative models for sustainable supply chain management: developments and directions. Eur. J. Oper. Res. 233(2), 299–312 (2014). https://doi.org/10.1016/j.ejor.2013.09.032

    Article  MathSciNet  MATH  Google Scholar 

  6. Ghisellini, P., Ripa, M., Ulgiati, S.: Exploring environmental and economic costs and benefits of a circular economy approach to the construction and demolition sector. A literature review. J. Clean. Prod. 178, 618–643 (2018). https://doi.org/10.1016/j.jclepro.2017.11.207

    Article  Google Scholar 

  7. Lieb, K.J., Lieb, R.C.: Environmental sustainability in the third-party logistics (3PL) industry. Int. J. Phys. Distrib. Logist. Manag. 40(7), 524–533 (2010). https://doi.org/10.1108/09600031011071984

    Article  Google Scholar 

  8. Hassini, E., Surti, C., Searcy, C.: A literature review and a case study of sustainable supply chains with a focus on metrics. Int. J. Prod. Econ. 140(1), 69–82 (2012). https://doi.org/10.1016/j.ijpe.2012.01.042

    Article  Google Scholar 

  9. Tseng, M.L., Lim, M., Wong, W.P.: Sustainable supply chain management A closed-loop network hierarchical approach. Ind. Manag. Data Syst. 115(3), 436–461 (2015). https://doi.org/10.1108/imds-10-2014-0319

    Article  Google Scholar 

  10. Bellmann, K., Khare, A.: Economic issues in recycling end-of-life vehicles. Technovation 20(12), 677–690 (2000). https://doi.org/10.1016/s0166-4972(00)00012-2

    Article  Google Scholar 

  11. Wu, Z.B., Ahmad, J., Xu, J.P.: A group decision making framework based on fuzzy VIKOR approach for machine tool selection with linguistic information. Appl. Soft Comput. 42, 314–324 (2016). https://doi.org/10.1016/j.asoc.2016.02.007

    Article  Google Scholar 

  12. Amindoust, A., Ahmed, S., Saghafinia, A., Bahreininejad, A.: Sustainable supplier selection: a ranking model based on fuzzy inference system. Appl. Soft Comput. 12(6), 1668–1677 (2012). https://doi.org/10.1016/j.asoc.2012.01.023

    Article  Google Scholar 

  13. Buyukozkan, G., Cifci, G.: A novel fuzzy multi-criteria decision framework for sustainable supplier selection with incomplete information. Comput. Ind. 62(2), 164–174 (2011). https://doi.org/10.1016/j.compind.2010.10.009

    Article  Google Scholar 

  14. Wang, Q.F., Lv, H.B.: Supplier selection group decision making in logistics service value cocreation based on intuitionistic fuzzy sets. Discrete Dyn. Nat. Soc. (2015). https://doi.org/10.1155/2015/719240

    Article  MathSciNet  MATH  Google Scholar 

  15. Perotti, S., Zorzini, M., Cagno, E., Micheli, G.J.L.: Green supply chain practices and company performance: the case of 3PLs in Italy. Int. J. Phys. Distrib. Logist. Manag. 42(7), 640–672 (2012). https://doi.org/10.1108/09600031211258138

    Article  Google Scholar 

  16. Ahmed, S., Ahmed, S., Shumon, M.R.H., Falatoonitoosi, E., Quader, M.A.: A comparative decision-making model for sustainable end-of-life vehicle management alternative selection using AHP and extent analysis method on fuzzy AHP. Int. J. Sustain. Dev. World Ecol. 23(1), 83–97 (2016). https://doi.org/10.1080/13504509.2015.1062814

    Article  Google Scholar 

  17. Cucchiella, F., D’Adamo, I., Rosa, P., Terzi, S.: Scrap automotive electronics: a mini-review of current management practices. Waste Manage. Res. 34(1), 3–10 (2016). https://doi.org/10.1177/0734242x15607429

    Article  Google Scholar 

  18. Sabaghi, M., Cai, Y.L., Mascle, C., Baptiste, P.: Sustainability assessment of dismantling strategies for end-of-life aircraft recycling. Resour. Conserv. Recycl. 102, 163–169 (2015). https://doi.org/10.1016/j.resconrec.2015.08.005

    Article  Google Scholar 

  19. Bali, O., Kose, E., Gumus, S.: Green supplier selection based on IFS and GRA. Grey Syst. Theory Appl 3(2), 158–176 (2013). https://doi.org/10.1108/GS-04-2013-0007

    Article  Google Scholar 

  20. Kannan, D., Jabbour, A., Jabbour, C.J.C.: Selecting green suppliers based on GSCM practices: using fuzzy TOPSIS applied to a Brazilian electronics company. Eur. J. Oper. Res. 233(2), 432–447 (2014). https://doi.org/10.1016/j.ejor.2013.07.023

    Article  MathSciNet  MATH  Google Scholar 

  21. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

  22. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  Google Scholar 

  23. Ansari, M.D., Mishra, A.R., Ansari, F.T.: New divergence and entropy measures for intuitionistic fuzzy sets on edge detection. Int. J. Fuzzy Syst. 20(2), 474–487 (2018). https://doi.org/10.1007/s40815-017-0348-4

    Article  MathSciNet  Google Scholar 

  24. Mishra, A.R.: Intuitionistic fuzzy information with application in rating of township development. Iran. J. Fuzzy Syst. 13(3), 49–70 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Mishra, A.R., Rani, P., Jain, D.: Information measures based TOPSIS method for multicriteria decision making problem in intuitionistic fuzzy environment. Iran. J. Fuzzy Syst. 14(6), 41–63 (2017)

    MathSciNet  MATH  Google Scholar 

  26. Mishra, A.R., Kumari, R., Sharma, D.: Intuitionistic fuzzy divergence measure-based multi-criteria decision-making method. Neural Comput. Appl. (2017). https://doi.org/10.1007/s00521-017-3187-1

    Article  Google Scholar 

  27. Mishra, A.R., Jain, D., Hooda, D.S.: Exponential intuitionistic fuzzy information measure with assessment of service quality. Int. J. Fuzzy Syst. 19(3), 788–798 (2017). https://doi.org/10.1007/s40815-016-0278-6

    Article  MathSciNet  Google Scholar 

  28. Yager, R.R.: Pythagorean fuzzy subsets. In: Proceedings of the 2013 Joint IFSA World Congress and Nafips Annual Meeting (2013)

  29. Yager, R.R.: Pythagorean membership grades in multicriteria decision making. IEEE Trans. Fuzzy Syst. 22(4), 958–965 (2014). https://doi.org/10.1109/TFUZZ.2013.2278989

    Article  Google Scholar 

  30. Yager, R.R., Abbasov, A.M.: Pythagorean membership grades, complex numbers, and decision making. Int. J. Intell. Syst. 28(5), 436–452 (2013). https://doi.org/10.1002/int.21584

    Article  Google Scholar 

  31. Zhang, X., Xu, Z.: Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets. Int. J. Intell. Syst. 29(12), 1061–1078 (2014). https://doi.org/10.1002/int.21676

    Article  Google Scholar 

  32. Ma, Z.M., Xu, Z.S.: Symmetric Pythagorean fuzzy weighted geometric/averaging operators and their application in multicriteria decision-making problems. Int. J. Intell. Syst. 31(12), 1198–1219 (2016). https://doi.org/10.1002/int.21823

    Article  Google Scholar 

  33. Haktanır, E., Kahraman, C.: A novel interval-valued Pythagorean fuzzy QFD method and its application to solar photovoltaic technology development. Comput. Ind. Eng. 132, 361–372 (2019). https://doi.org/10.1016/j.cie.2019.04.022

    Article  Google Scholar 

  34. Liang, D., Zhang, Y., Xu, Z., Jamaldeen, A.: Pythagorean fuzzy VIKOR approaches based on TODIM for evaluating internet banking website quality of Ghanaian banking industry. Appl. Soft Comput. 78, 583–594 (2019). https://doi.org/10.1016/j.asoc.2019.03.006

    Article  Google Scholar 

  35. Xiao, F., Ding, W.: Divergence measure of Pythagorean fuzzy sets and its application in medical diagnosis. Appl. Soft Comput. 79, 254–267 (2019). https://doi.org/10.1016/j.asoc.2019.03.043

    Article  Google Scholar 

  36. Liang, D., Xu, Z., Liu, D., Wu, Y.: Method for three-way decisions using ideal TOPSIS solutions at Pythagorean fuzzy information. Inf. Sci. 435, 282–295 (2018). https://doi.org/10.1016/j.ins.2018.01.015

    Article  MathSciNet  MATH  Google Scholar 

  37. Wu, Q., Lin, W., Zhou, L., Chen, Y., Chen, H.: Enhancing multiple attribute group decision making flexibility based on information fusion technique and hesitant Pythagorean fuzzy sets. Comput. Ind. Eng. 127, 954–970 (2019). https://doi.org/10.1016/j.cie.2018.11.029

    Article  Google Scholar 

  38. Yu, C., Shao, Y., Wang, K., Zhang, L.: A group decision making sustainable supplier selection approach using extended TOPSIS under interval-valued Pythagorean fuzzy environment. Expert Syst. Appl. 121, 1–17 (2019). https://doi.org/10.1016/j.eswa.2018.12.010

    Article  Google Scholar 

  39. Pamučar, D., Stević, Ž., Zavadskas, E.K.: Integration of interval rough AHP and interval rough MABAC methods for evaluating university web pages. Appl. Soft Comput. 67, 141–163 (2018). https://doi.org/10.1016/j.asoc.2018.02.057

    Article  Google Scholar 

  40. Luo, S.-Z., Liang, W.-Z.: Optimization of roadway support schemes with likelihood-based MABAC method. Appl. Soft Comput. 80, 80–92 (2019). https://doi.org/10.1016/j.asoc.2019.03.020

    Article  Google Scholar 

  41. Jia, F., Liu, Y., Wang, X.: An extended MABAC method for multi-criteria group decision making based on intuitionistic fuzzy rough numbers. Expert Syst. Appl. 127, 241–255 (2019). https://doi.org/10.1016/j.eswa.2019.03.016

    Article  Google Scholar 

  42. Ghorabaee, M.K., Amiri, M., Zavadskas, E.K., Hooshmand, R., Antuchevičienė, J.: Fuzzy extension of the CODAS method for multi-criteria market segment evaluation. J. Bus. Econ. Manag. 18(1), 1–19 (2017). https://doi.org/10.3846/16111699.2016.1278559

    Article  Google Scholar 

  43. Peng, X., Garg, H.: Algorithms for interval-valued fuzzy soft sets in emergency decision making based on WDBA and CODAS with new information measure. Comput. Ind. Eng. 119, 439–452 (2018). https://doi.org/10.1016/j.cie.2018.04.001

    Article  Google Scholar 

  44. Liao, H., Mi, X., Yu, Q., Luo, L.: Hospital performance evaluation by a hesitant fuzzy linguistic best worst method with inconsistency repairing. J. Clean. Prod. 232, 657–671 (2019). https://doi.org/10.1016/j.jclepro.2019.05.308

    Article  Google Scholar 

  45. Mi, X., Tang, M., Liao, H., Shen, W., Lev, B.: The state-of-the-art survey on integrations and applications of the best worst method in decision making: why, what, what for and what’s next? Omega (2019). https://doi.org/10.1016/j.omega.2019.01.009

    Article  Google Scholar 

  46. Zhang, X.L.: A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision making. Int. J. Intell. Syst. 31(6), 593–611 (2016). https://doi.org/10.1002/int.21796

    Article  Google Scholar 

  47. Peng, X., Yang, Y.: Pythagorean fuzzy choquet integral based MABAC method for multiple attribute group decision making. Int. J. Intell. Syst. 31(10), 989–1020 (2016)

    Article  Google Scholar 

  48. Zhang, X.: Multicriteria Pythagorean fuzzy decision analysis: a hierarchical QUALIFLEX approach with the closeness index-based ranking methods. Inf. Sci. 330, 104–124 (2016). https://doi.org/10.1016/j.ins.2015.10.012

    Article  Google Scholar 

  49. Ren, P., Xu, Z., Gou, X.: Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl. Soft Comput. 42, 246–259 (2016). https://doi.org/10.1016/j.asoc.2015.12.020

    Article  Google Scholar 

  50. Xue, W., Xu, Z., Zhang, X., Tian, X.: Pythagorean fuzzy LINMAP method based on the entropy theory for railway project investment decision making. Int. J. Intell. Syst. 33(1), 93–125 (2018). https://doi.org/10.1002/int.21941

    Article  Google Scholar 

  51. Chen, T.-Y.: Remoteness index-based Pythagorean fuzzy VIKOR methods with a generalized distance measure for multiple criteria decision analysis. Inf. Fusion 41, 129–150 (2018). https://doi.org/10.1016/j.inffus.2017.09.003

    Article  Google Scholar 

  52. Ak, M.F., Gul, M.: AHP–TOPSIS integration extended with Pythagorean fuzzy sets for information security risk analysis. Complex Intell. Syst. 5(2), 113–126 (2019). https://doi.org/10.1007/s40747-018-0087-7

    Article  Google Scholar 

  53. Gupta, P., Mehlawat, M.K., Grover, N., Pedrycz, W.: Multi-attribute group decision making based on extended TOPSIS method under interval-valued intuitionistic fuzzy environment. Appl. Soft Comput. 69, 554–567 (2018). https://doi.org/10.1016/j.asoc.2018.04.032

    Article  Google Scholar 

  54. Kacprzak, D.: A doubly extended TOPSIS method for group decision making based on ordered fuzzy numbers. Expert Syst. Appl. 116, 243–254 (2019). https://doi.org/10.1016/j.eswa.2018.09.023

    Article  Google Scholar 

  55. Shen, F., Ma, X., Li, Z., Xu, Z., Cai, D.: An extended intuitionistic fuzzy TOPSIS method based on a new distance measure with an application to credit risk evaluation. Inf. Sci. 428, 105–119 (2018). https://doi.org/10.1016/j.ins.2017.10.045

    Article  MathSciNet  Google Scholar 

  56. Wang, C.-Y., Chen, S.-M.: Multiple attribute decision making based on interval-valued intuitionistic fuzzy sets, linear programming methodology, and the extended TOPSIS method. Inf. Sci. 397–398, 155–167 (2017). https://doi.org/10.1016/j.ins.2017.02.045

    Article  Google Scholar 

  57. Peng, X., Dai, J.: Approaches to Pythagorean fuzzy stochastic multi-criteria decision making based on prospect theory and regret theory with new distance measure and score function. Int. J. Intell. Syst. 32(11), 1187–1214 (2017). https://doi.org/10.1002/int.21896

    Article  Google Scholar 

  58. Wei, G., Wei, Y.: Similarity measures of Pythagorean fuzzy sets based on the cosine function and their applications. Int. J. Intell. Syst. 33(3), 634–652 (2018). https://doi.org/10.1002/int.21965

    Article  Google Scholar 

  59. Peng, X., Yuan, H., Yang, Y.: Pythagorean fuzzy information measures and their applications. Int. J. Intell. Syst. 32(10), 991–1029 (2017). https://doi.org/10.1002/int.21880

    Article  Google Scholar 

  60. Zhou, F., Wang, X., Lim, M.K., He, Y., Li, L.: Sustainable recycling partner selection using fuzzy DEMATEL-AEW-FVIKOR: a case study in small-and-medium enterprises (SMEs). J. Clean. Prod. 196, 489–504 (2018). https://doi.org/10.1016/j.jclepro.2018.05.247

    Article  Google Scholar 

  61. Shemshadi, A., Shirazi, H., Toreihi, M., Tarokh, M.J.: A fuzzy VIKOR method for supplier selection based on entropy measure for objective weighting. Expert Syst. Appl. 38(10), 12160–12167 (2011). https://doi.org/10.1016/j.eswa.2011.03.027

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 71771156), the 2019 Sichuan Planning Project of Social Science (No. SC18A007) and the 2019 Soft Science Project of Sichuan Science and Technology Department (No. 2019JDR0141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huchang Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, P., Mishra, A.R., Rezaei, G. et al. Extended Pythagorean Fuzzy TOPSIS Method Based on Similarity Measure for Sustainable Recycling Partner Selection. Int. J. Fuzzy Syst. 22, 735–747 (2020). https://doi.org/10.1007/s40815-019-00689-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00689-9

Keywords

Navigation