Skip to main content
Log in

An Uncertain Multi-objective Assembly Line Balancing Problem: A Credibility-Based Fuzzy Modeling Approach

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

An assembly line balancing problem with three minimization type objective functions e.g. the number of stations, the total tool purchasing cost of all stations, and the cycle time is considered in this study. As some parameters of the problem are of fuzzy type uncertainty, a hybrid credibility-based fuzzy modeling approach is proposed to re-formulate the problem as a crisp formulation. As the objective functions of the problem are of different scales, an interactive approach equipped with two different solution approaches of Max–Min criterion and Global criterion is proposed to obtain the Pareto optimal solutions of the crisp formulation. Finally, the efficiency of the proposed solution approaches is tested by a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Amini, S., Homayouni, S., Safari, A., Darvishsefat, A.A.: Object-based classification of hyperspectral data using Random Forest algorithm. Geo-sp. Inf. Sci. 21(2), 127–138 (2018)

    Google Scholar 

  2. Askin, R.G., Zhou, M.: A parallel station heuristic for the mixed-model production line balancing problem. Int. J. Prod. Res. 35, 3095–3105 (1997)

    MATH  Google Scholar 

  3. Aydemir-Karadag, A., Turkbey, O.: Multi-objective optimization of stochastic disassembly line balancing with station paralleling. Comput. Ind. Eng. 65, 413–425 (2013)

    Google Scholar 

  4. Babazadeh, H., Alavidoost, M.H., Zarandi, M.F., Sayyari, S.T.: An enhanced NSGA-II algorithm for fuzzy bi-objective assembly line balancing problems. Comput. Ind. Eng. 123, 189–208 (2018)

    Google Scholar 

  5. Baybars, I.: A survey of exact algorithms for the simple assembly line balancing problem. Manage. Sci. 32, 909–932 (1986)

    MathSciNet  MATH  Google Scholar 

  6. Baykasoglu, A.: Multi-rule multi-objective simulated annealing algorithm for straight and U type assembly line balancing problems. J. Intell. Manuf. 17, 217–232 (2006)

    Google Scholar 

  7. Becker, C., Scholl, A.: A survey on problems and methods in generalized assembly line balancing. Eur. J. Oper. Res. 168, 694–715 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manage. Sci. 17(4), 141–164 (1970)

    MathSciNet  MATH  Google Scholar 

  9. Bukchin, J., Rubinovitz, J.: A weighted approach for assembly line design with station paralleling and equipment selection. IIE Trans. 35, 73–85 (2003)

    Google Scholar 

  10. Buxey, G.M.: Assembly line balancing with multiple stations. Manage. Sci. 20, 1010–1021 (1974)

    Google Scholar 

  11. Cakir, B., Altiparmak, F., Dengiz, B.: Multi-objective optimization of a stochastic assembly line balancing: a hybrid simulated annealing algorithm. Comput. Ind. Eng. 60, 376–384 (2011)

    Google Scholar 

  12. Chica, M., Cordón, Ó., Damas, S.: An advanced multi objective genetic algorithm design for the time and space assembly line balancing problem. Comput. Ind. Eng. 61, 103–117 (2011)

    Google Scholar 

  13. Çil, Z.A., Mete, S., Özceylan, E., Ağpak, K.: A beam search approach for solving type II robotic parallel assembly line balancing problem. Appl. Soft Comput. 61, 129–138 (2017)

    Google Scholar 

  14. Gamberini, R., Grassi, A., Rimini, B.: A new multi-objective heuristic algorithm for solving the stochastic assembly line re-balancing problem. Int. J. Prod. Econ. 102(2), 226–243 (2006)

    Google Scholar 

  15. Gomes, J.H.F., Salgado Jr., A.R., Paiva, A.P., Ferreira, J.R., Costa, S.C., Balestrassi, P.P.: Global criterion method based on principal components to the optimization of manufacturing processes with multiple responses. J. Mech. Eng. 58(5), 345–353 (2012)

    Google Scholar 

  16. Guerriero, F., Miltenburg, J.: The stochastic U-line balancing problem. Naval Res. Logist. 50(1), 31–57 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Gurevsky, E., Hazir, O., Battaïa, O., Dolgui, A.: Robust balancing of straight assembly lines with interval task times. J. Oper. Res. Soc. 64(11), 1607–1613 (2012)

    Google Scholar 

  18. Hamta, N., Fatemi Ghomi, S.M.T., Jolai, F., Akbarpour Shirazi, M.: A hybrid PSO algorithm for a multi-objective assembly line balancing problem with flexible operation times, sequence-dependent setup times and learning effect. Int. J. Prod. Econ. 141, 99–111 (2013)

    Google Scholar 

  19. Hazir, E., Erdinler, E.S., Koc, K.H.: Optimization of CNC cutting parameters using design of experiment (DOE) and desirability function. J. For. Res. 29(5), 1423–1434 (2018)

    Google Scholar 

  20. Hazir, O., Dolgui, A.: Assembly line balancing under uncertainty: robust optimization models and exact solution method. Comput. Ind. Eng. 65(2), 261–267 (2013)

    Google Scholar 

  21. Hazır, Ö., Dolgui, A.: A decomposition based solution algorithm for U-type assembly line balancing with interval data. Comput. Oper. Res. 59, 126–131 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Heydari, A., Mahmoodirad, A., Niroomand, S.: An entropy-based mathematical formulation for straight assembly line balancing problem. Int. J. Strateg. Decis. Sci. 7(2), 57–68 (2016)

    Google Scholar 

  23. Hwang, C.L., Masud, A.: Multiple objective decision making. Methods and applications: a state of the art survey. Lecture notes in economics and mathematical systems, p. 164. Springer-Verlag, Berlin (1979)

    Google Scholar 

  24. Khalili, S., Mohammadzade, H., Fallahnezhad, M.S.: A new approach based on queuing theory for solving the assembly line balancing problem using fuzzy prioritization techniques. Sci. Iran. Trans. E Ind. Eng. 23(1), 387 (2016)

    Google Scholar 

  25. Lalaoui, M., El Afia, A.: A fuzzy generalized simulated annealing for a simple assembly line balancing problem. IFAC-PapersOnLine 51(32), 600–605 (2018)

    Google Scholar 

  26. Li, X., Liu, B.: A sufficient and necessary condition of credibility measure. Int. J. Uncertain. Knowl. Based Syst. 14(5), 527–535 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Liu, B.: Dependent-chance programming with fuzzy decisions. IEEE Trans. Fuzzy Syst. 7, 354–360 (1999)

    Google Scholar 

  28. Liu, B., Iwamura, K.: Chance constrained programming with fuzzy parameters. Fuzzy Sets Syst. 94, 227–237 (1998)

    MathSciNet  MATH  Google Scholar 

  29. Liu, B., Liu, Y.K.: Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans. Fuzzy Syst. 10(4), 445–450 (2002)

    Google Scholar 

  30. Mahmoodirad, A., Niroomand, S., Mirzaei, N., Shoja, A.: Fuzzy fractional minimal cost flow problem. Int. J. Fuzzy Syst. 20(1), 174–186 (2018)

    MathSciNet  Google Scholar 

  31. Mahmoodirad, A., Allahviranloo, T., Niroomand, S.: A new effective solution method for fully intuitionistic fuzzy transportation problem. Soft. Comput. 23(12), 4521–4530 (2019)

    MATH  Google Scholar 

  32. Mardani-Fard, H.A., Hadi-Vencheh, A., Mahmoodirad, A., Niroomand, S.: An effective hybrid goal programming approach for multi-objective straight assembly line balancing problem with stochastic parameters. Oper. Res. Int. J. (2018). https://doi.org/10.1007/s12351-018-0428-8

    Article  Google Scholar 

  33. Mcmullen, P.R., Tarasewich, P.: Multi-objective assembly line balancing via a modified ant colony optimization technique. Int. J. Prod. Res. 44, 27–42 (2006)

    MATH  Google Scholar 

  34. Moradi, H., Zandieh, M.: An imperialist competitive algorithm for a mixed-model assembly line sequencing problem. J. Manuf. Syst. 32(1), 46–54 (2013)

    Google Scholar 

  35. Mosallaeipour, S., Mahmoodirad, A., Niroomand, S., Vizvari, B.: Simultaneous selection of material and supplier under uncertainty in carton box industries: a fuzzy possibilistic multi-criteria approach. Soft. Comput. 22(9), 2891–2905 (2018)

    MATH  Google Scholar 

  36. Nearchou, A.C.: Multi-objective balancing of assembly lines by population heuristics. Int. J. Prod. Res. 46(8), 2275–2297 (2008)

    MATH  Google Scholar 

  37. Nourmohammadi, A., Zandieh, M.: Assembly line balancing by a new multi-objective differential evolution algorithm based on TOPSIS. Int. J. Prod. Res. 49, 2833–2855 (2011)

    Google Scholar 

  38. Ogan, D., Azizoglu, M.: A branch and bound method for the line balancing problem in U-shaped assembly lines with equipment requirements. J. Manuf. Syst. 36, 46–54 (2015)

    Google Scholar 

  39. Pishvaee, M.S., Torabi, S.A., Razmi, J.: Credibility-based fuzzy mathematical programming model for green logistics design under uncertainty. Comput. Ind. Eng. 62, 624–632 (2012)

    Google Scholar 

  40. Ponnambalam, S.G., Aravindan, P., Mogileeswar Naidu, G.: A multi-objective genetic algorithm for solving assembly line balancing problem. Int. J. Adv. Manuf. Technol. 16(5), 341–352 (2000)

    Google Scholar 

  41. Sakiani, R., Fatemi Ghomi, S.M.T., Zandieh, M.: Multi-objective supply planning for two-level assembly systems with stochastic lead times. Comput. Oper. Res. 39(7), 1325–1332 (2012)

    Google Scholar 

  42. Salehi, M., Maleki, H.R., Niroomand, S.: A multi-objective assembly line balancing problem with worker’s skill and qualification considerations in fuzzy environment. Appl. Intell. 48(8), 2137–2156 (2018)

    Google Scholar 

  43. Saraj, M., Safaei, N.: Solving bi-level programming problems on using global criterion method with an interval approach. Appl. Math. Sci. 6(23), 1135–1141 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Scholl, A., Becker, C.: State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. Eur. J. Oper. Res. 168, 666–693 (2006)

    MathSciNet  MATH  Google Scholar 

  45. Song, M., Chen, D.: An improved knowledge-informed NSGA-II for multi-objective land allocation (MOLA). Geo-sp. Inf. Sci. 21(4), 273–287 (2018)

    Google Scholar 

  46. Steuer, R.E.: Multiple criteria optimization: theory, computation, and application. Wiley, New York (1986)

    MATH  Google Scholar 

  47. Urban, T., Chiang, W.C.: An optimal piecewise-linear program for the U-line balancing problem with stochastic task times. Eur. J. Oper. Res. 168(3), 771–782 (2006)

    MathSciNet  MATH  Google Scholar 

  48. Zhang, W., Gen, M.: An efficient multi-objective genetic algorithm for mixed-model assembly line balancing problem considering demand ratio-based cycle time. Intell. Manuf. 22, 367–378 (2011)

    Google Scholar 

  49. Zhu, H., Zhang, J., (2009) A credibility-based fuzzy programming model for APP problem. In: International conference on artificial intelligence and computational intelligence

  50. Zimmermann, H.J.: Fuzzy set theory and its applications, 3rd edn. Kluwer Academic Publishers, Boston/Dordrecht (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mahmoodirad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, N., Mahmoodirad, A. & Niroomand, S. An Uncertain Multi-objective Assembly Line Balancing Problem: A Credibility-Based Fuzzy Modeling Approach. Int. J. Fuzzy Syst. 21, 2392–2404 (2019). https://doi.org/10.1007/s40815-019-00734-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00734-7

Keywords