Abstract
The fuzzy c-means (FCM) clustering algorithm is an unsupervised learning method that has been widely applied to cluster unlabeled data automatically instead of artificially, but is sensitive to noisy observations due to its inappropriate treatment of noise in the data. In this paper, a novel method considering noise intelligently based on the existing FCM approach, called adaptive-FCM and its extended version (adaptive-REFCM) in combination with relative entropy, are proposed. Adaptive-FCM, relying on an inventive integration of the adaptive norm, benefits from a robust overall structure. Adaptive-REFCM further integrates the properties of the relative entropy and normalized distance to preserve the global details of the dataset. Several experiments are carried out, including noisy or noise-free University of California Irvine (UCI) clustering and image segmentation experiments. The results show that adaptive-REFCM exhibits better noise robustness and adaptive adjustment in comparison with relevant state-of-the-art FCM methods.













Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bock, H.H.: Origins and extensions of the k-means algorithm in cluster analysis. Elect. J. 4, 2 (2008)
Zadeh, L.A.: Fuzzy logic = computing with words. Physica-Verlag, Heidelberg (1999)
Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)
Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X
Dunn, J.C.: A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 32–57 (1973). https://doi.org/10.1080/01969727308546046
Jing, G., Jiao, L., Yang, S., Fang, L.: Fuzzy double c-means clustering based on sparse self-representation. IEEE Trans. Fuzzy Syst. 99, 1–1 (2018)
Keller, A., Klawonn, F.: Fuzzy clustering with weighting of data variables. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 8(06), 735–746 (2000)
Le, H.S., Tien, N.D.: Tune up fuzzy c-means for big data: some novel hybrid clustering algorithms based on initial selection and incremental clustering. Int. J. Fuzzy Syst. 19(5), 1–18 (2016). https://doi.org/10.1007/s40815-016-0260-3
Hu, Z., Bodyanskiy, Y.V., Tyshchenko, O.K., Samitova, V.O.: Fuzzy clustering data given on the ordinal scale based on membership and likelihood functions sharing. Int. J. Intell. Syst. Appl. 9(2), 1–9 (2017)
Raja, S., Ramaiah, S.: An efficient fuzzy-based hybrid system to cloud intrusion detection. Int. J. Fuzzy Syst. 19(1), 62–77 (2017). https://doi.org/10.1007/s40815-016-0147-3
Zhao, X., Yu, L., Zhao, Q.: A fuzzy clustering approach for complex color image segmentation based on gaussian model with interactions between color planes and mixture gaussian model. Int. J. Fuzzy Syst. 20(1), 309–317 (2018). https://doi.org/10.1007/s40815-017-0411-1
Davarpanah, S.H., Liew, W.C.: Spatial possibilistic fuzzy c-mean segmentation algorithm integrated with brain mid-sagittal surface information. Int. J. Fuzzy Syst. 19(2), 1–15 (2017). https://doi.org/10.1007/s40815-016-0247-0
Hung, C.C., Kulkarni, S., Kuo, B.C.: A new weighted fuzzy c-means clustering algorithm for remotely sensed image classification. IEEE J. Select. Topics Signal Process. 5(3), 543–553 (2011)
Zhou, J., Chen, L., Chen, C.L.P., Zhang, Y.H., Li, H.X.: Fuzzy clustering with the entropy of attribute weights. Neurocomputing 198, 125–134 (2016). https://doi.org/10.1016/j.neucom.2015.09.127
Kroger, P.: Outlier detection techniques. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining (2010)
Chang, X., Wang, Q., Liu, Y., Wang, Y.: Sparse regularization in fuzzy \(c\)-means for high-dimensional data clustering. IEEE Trans. Cybern. 47(9), 2616–2627 (2017). https://doi.org/10.1109/TCYB.2016.2627686
Hamasuna, Y., Endo, Y., Miyamoto, S.: Comparison of tolerant fuzzy c-means clustering with \(l_{1}\) and \(l_{2}\) regularization. In: IEEE international conference on granular computing, pp. 197–202 (2009)
Yun-Xia, Y.U., Wang, S.T., Zhu, W.P.: On fuzzy c-means for data with tolerance. Comput. Eng. Des. 31(3), 612–615 (2010)
Rubio, E., Castillo, O.: Designing type-2 fuzzy systems using the interval type-2 fuzzy c-means algorithm. Stud. Comput. Intell. (2014). https://doi.org/10.1007/978-3-319-05170-3_3
Yu, S.M., Wang, J., Wang, J.Q.: An interval type-2 fuzzy likelihood-based mabac approach and its application in selecting hotels on a tourism website. Int. J. Fuzzy Syst. 19(1), 47–61 (2017). https://doi.org/10.1007/s40815-016-0217-6
Vu, M.N., Long, T.N.: A multiple kernels interval type-2 possibilistic c-means. Stud. Comput. Intell. (2016). https://doi.org/10.1007/978-3-319-31277-4_6
Miyamoto, S.: Multisets and fuzzy multisets. Springer, Berlin (2000)
Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986). https://doi.org/10.1016/S0165-0114(86)80034-3
Liao, H., Xu, Z., Herrera-Viedma, E., Herrera, F.: Hesitant fuzzy linguistic term set and its application in decision making: a state-of-the-art survey. Int. J. Fuzzy Syst. 20(12), 1–27 (2017). https://doi.org/10.1007/s40815-017-0432-9
Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010). https://doi.org/10.1002/int.20418
Wang, J., Wang, J.Q., Zhang, H.Y., Chen, X.H.: Multi-criteria group decision-making approach based on 2-tuple linguistic aggregation operators with multi-hesitant fuzzy linguistic information. Int. J. Fuzzy Syst. 18(1), 81–97 (2016). https://doi.org/10.1007/s40815-015-0050-3
Wen, F., Liu, P., Liu, Y., Qiu, R.C., Yu, W.: Robust sparse recovery for compressive sensing in impulsive noise using p-norm model fitting. In: 2016 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE, pp. 4643–4647 (2016)
Tang, M., Nie, F., Jain, R.: Capped lp-norm graph embedding for photo clustering. In: Proceedings of the 24th ACM international conference on Multimedia, pp. 431–435. ACM (2016)
Ding, C.: A new robust function that smoothly interpolates between l1 and l2 error functions. Univerisity of Texas at Arlington Tech Report
Nie, F., Wang, H., Huang, H., Ding, C.: Adaptive loss minimization for semi-supervised elastic embedding. In: International joint conference on artificial intelligence, pp. 1565–1571 (2013)
Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1(2), 98–110 (1993)
Zarinbal, M., Zarandi, M.H.F., Turksen, I.B.: Relative entropy fuzzy c-means clustering. Inf. Sci. 260(1), 74–97 (2014). https://doi.org/10.1016/j.ins.2013.11.004
Gustafson, D.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. In: 1978 IEEE conference on decision and control including the symposium on adaptive processes, pp. 761–766 (2007). https://doi.org/10.1109/CDC.1978.268028
Tibshirani, R.: Regression shrinkage and selection via the lasso: a retrospective. J. R. Stat. Soc. Series B Stat. Methodol. 73(3), 273–282 (2011). https://doi.org/10.1111/j.1467-9868.2011.00771.x
Hui, Z., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. 67(5), 768–768 (2010). https://doi.org/10.1111/j.1467-9868.2005.00527.x
Liu, H.C., Jeng, B.C., Yih, J.M., Yu, Y.K.: Fuzzy c-means algorithm based on standard Mahalanobis distances. Proc. Int. Symp. Inf. Process 15, 581–595 (2009)
Zhao, X., Li, Y., Zhao, Q.: Mahalanobis distance based on fuzzy clustering algorithm for image segmentation. Digit. Signal Process. 43, 8–16 (2015)
Corless, R.M., Gonnet, G.H., Knuth, D.: On the Lambertw function. In: Advances in computational mathematics, p. 329–359 (1996) https://doi.org/10.1007/BF02124750
Pal, N.R., Bezdek, J.C.: Correction to on cluster validity for the fuzzy c-means model (1997)
Bezdek, J.C.: A physical interpretation of fuzzy isodata. IEEE Trans. Syst. Man Cybern. 6(5), 387–389 (2007)
Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml
Rand, W.M.: Objective criteria for the evaluation of clustering methods. Publ. Am. Stat. Assoc. 66(336), 846–850 (1971)
Luo, M., Nie, F., Chang, X., Yang, Y., Hauptmann, A.G., Zheng, Q.: Adaptive unsupervised feature selection with structure regularization. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 944–956 (2018)
Wen, Z., Liu, X., Chen, Y., Wu, W., Wei, W., Li, X.: Feature-derived graph regularized matrix factorization for predicting drug side effects. Neurocomputing 287, 154 (2018)
Acknowledgements
This study was supported by the National Natural Science Foundation of China (61203176) and the Natural Science Foundation of Fujian Province (2013J05098, 2016J01756).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gao, Y., Wang, D., Pan, J. et al. A Novel Fuzzy c-Means Clustering Algorithm Using Adaptive Norm. Int. J. Fuzzy Syst. 21, 2632–2649 (2019). https://doi.org/10.1007/s40815-019-00740-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40815-019-00740-9