Skip to main content
Log in

A Novel Fuzzy c-Means Clustering Algorithm Using Adaptive Norm

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The fuzzy c-means (FCM) clustering algorithm is an unsupervised learning method that has been widely applied to cluster unlabeled data automatically instead of artificially, but is sensitive to noisy observations due to its inappropriate treatment of noise in the data. In this paper, a novel method considering noise intelligently based on the existing FCM approach, called adaptive-FCM and its extended version (adaptive-REFCM) in combination with relative entropy, are proposed. Adaptive-FCM, relying on an inventive integration of the adaptive norm, benefits from a robust overall structure. Adaptive-REFCM further integrates the properties of the relative entropy and normalized distance to preserve the global details of the dataset. Several experiments are carried out, including noisy or noise-free University of California Irvine (UCI) clustering and image segmentation experiments. The results show that adaptive-REFCM exhibits better noise robustness and adaptive adjustment in comparison with relevant state-of-the-art FCM methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bock, H.H.: Origins and extensions of the k-means algorithm in cluster analysis. Elect. J. 4, 2 (2008)

    MathSciNet  Google Scholar 

  2. Zadeh, L.A.: Fuzzy logic = computing with words. Physica-Verlag, Heidelberg (1999)

    Book  Google Scholar 

  3. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

  4. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  5. Dunn, J.C.: A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 32–57 (1973). https://doi.org/10.1080/01969727308546046

    Article  MathSciNet  MATH  Google Scholar 

  6. Jing, G., Jiao, L., Yang, S., Fang, L.: Fuzzy double c-means clustering based on sparse self-representation. IEEE Trans. Fuzzy Syst. 99, 1–1 (2018)

    Google Scholar 

  7. Keller, A., Klawonn, F.: Fuzzy clustering with weighting of data variables. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 8(06), 735–746 (2000)

    Article  Google Scholar 

  8. Le, H.S., Tien, N.D.: Tune up fuzzy c-means for big data: some novel hybrid clustering algorithms based on initial selection and incremental clustering. Int. J. Fuzzy Syst. 19(5), 1–18 (2016). https://doi.org/10.1007/s40815-016-0260-3

    Article  MathSciNet  Google Scholar 

  9. Hu, Z., Bodyanskiy, Y.V., Tyshchenko, O.K., Samitova, V.O.: Fuzzy clustering data given on the ordinal scale based on membership and likelihood functions sharing. Int. J. Intell. Syst. Appl. 9(2), 1–9 (2017)

    Google Scholar 

  10. Raja, S., Ramaiah, S.: An efficient fuzzy-based hybrid system to cloud intrusion detection. Int. J. Fuzzy Syst. 19(1), 62–77 (2017). https://doi.org/10.1007/s40815-016-0147-3

    Article  Google Scholar 

  11. Zhao, X., Yu, L., Zhao, Q.: A fuzzy clustering approach for complex color image segmentation based on gaussian model with interactions between color planes and mixture gaussian model. Int. J. Fuzzy Syst. 20(1), 309–317 (2018). https://doi.org/10.1007/s40815-017-0411-1

    Article  MathSciNet  Google Scholar 

  12. Davarpanah, S.H., Liew, W.C.: Spatial possibilistic fuzzy c-mean segmentation algorithm integrated with brain mid-sagittal surface information. Int. J. Fuzzy Syst. 19(2), 1–15 (2017). https://doi.org/10.1007/s40815-016-0247-0

    Article  MathSciNet  Google Scholar 

  13. Hung, C.C., Kulkarni, S., Kuo, B.C.: A new weighted fuzzy c-means clustering algorithm for remotely sensed image classification. IEEE J. Select. Topics Signal Process. 5(3), 543–553 (2011)

    Article  Google Scholar 

  14. Zhou, J., Chen, L., Chen, C.L.P., Zhang, Y.H., Li, H.X.: Fuzzy clustering with the entropy of attribute weights. Neurocomputing 198, 125–134 (2016). https://doi.org/10.1016/j.neucom.2015.09.127

    Article  Google Scholar 

  15. Kroger, P.: Outlier detection techniques. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining (2010)

  16. Chang, X., Wang, Q., Liu, Y., Wang, Y.: Sparse regularization in fuzzy \(c\)-means for high-dimensional data clustering. IEEE Trans. Cybern. 47(9), 2616–2627 (2017). https://doi.org/10.1109/TCYB.2016.2627686

    Article  Google Scholar 

  17. Hamasuna, Y., Endo, Y., Miyamoto, S.: Comparison of tolerant fuzzy c-means clustering with \(l_{1}\) and \(l_{2}\) regularization. In: IEEE international conference on granular computing, pp. 197–202 (2009)

  18. Yun-Xia, Y.U., Wang, S.T., Zhu, W.P.: On fuzzy c-means for data with tolerance. Comput. Eng. Des. 31(3), 612–615 (2010)

    Google Scholar 

  19. Rubio, E., Castillo, O.: Designing type-2 fuzzy systems using the interval type-2 fuzzy c-means algorithm. Stud. Comput. Intell. (2014). https://doi.org/10.1007/978-3-319-05170-3_3

    Article  Google Scholar 

  20. Yu, S.M., Wang, J., Wang, J.Q.: An interval type-2 fuzzy likelihood-based mabac approach and its application in selecting hotels on a tourism website. Int. J. Fuzzy Syst. 19(1), 47–61 (2017). https://doi.org/10.1007/s40815-016-0217-6

    Article  MathSciNet  Google Scholar 

  21. Vu, M.N., Long, T.N.: A multiple kernels interval type-2 possibilistic c-means. Stud. Comput. Intell. (2016). https://doi.org/10.1007/978-3-319-31277-4_6

    Article  Google Scholar 

  22. Miyamoto, S.: Multisets and fuzzy multisets. Springer, Berlin (2000)

    Book  Google Scholar 

  23. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986). https://doi.org/10.1016/S0165-0114(86)80034-3

    Article  MATH  Google Scholar 

  24. Liao, H., Xu, Z., Herrera-Viedma, E., Herrera, F.: Hesitant fuzzy linguistic term set and its application in decision making: a state-of-the-art survey. Int. J. Fuzzy Syst. 20(12), 1–27 (2017). https://doi.org/10.1007/s40815-017-0432-9

    Article  MathSciNet  Google Scholar 

  25. Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010). https://doi.org/10.1002/int.20418

    Article  MATH  Google Scholar 

  26. Wang, J., Wang, J.Q., Zhang, H.Y., Chen, X.H.: Multi-criteria group decision-making approach based on 2-tuple linguistic aggregation operators with multi-hesitant fuzzy linguistic information. Int. J. Fuzzy Syst. 18(1), 81–97 (2016). https://doi.org/10.1007/s40815-015-0050-3

    Article  MathSciNet  Google Scholar 

  27. Wen, F., Liu, P., Liu, Y., Qiu, R.C., Yu, W.: Robust sparse recovery for compressive sensing in impulsive noise using p-norm model fitting. In: 2016 IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE, pp. 4643–4647 (2016)

  28. Tang, M., Nie, F., Jain, R.: Capped lp-norm graph embedding for photo clustering. In: Proceedings of the 24th ACM international conference on Multimedia, pp. 431–435. ACM (2016)

  29. Ding, C.: A new robust function that smoothly interpolates between l1 and l2 error functions. Univerisity of Texas at Arlington Tech Report

  30. Nie, F., Wang, H., Huang, H., Ding, C.: Adaptive loss minimization for semi-supervised elastic embedding. In: International joint conference on artificial intelligence, pp. 1565–1571 (2013)

  31. Krishnapuram, R., Keller, J.M.: A possibilistic approach to clustering. IEEE Trans. Fuzzy Syst. 1(2), 98–110 (1993)

    Article  Google Scholar 

  32. Zarinbal, M., Zarandi, M.H.F., Turksen, I.B.: Relative entropy fuzzy c-means clustering. Inf. Sci. 260(1), 74–97 (2014). https://doi.org/10.1016/j.ins.2013.11.004

    Article  MathSciNet  MATH  Google Scholar 

  33. Gustafson, D.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. In: 1978 IEEE conference on decision and control including the symposium on adaptive processes, pp. 761–766 (2007). https://doi.org/10.1109/CDC.1978.268028

  34. Tibshirani, R.: Regression shrinkage and selection via the lasso: a retrospective. J. R. Stat. Soc. Series B Stat. Methodol. 73(3), 273–282 (2011). https://doi.org/10.1111/j.1467-9868.2011.00771.x

    Article  MathSciNet  MATH  Google Scholar 

  35. Hui, Z., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. 67(5), 768–768 (2010). https://doi.org/10.1111/j.1467-9868.2005.00527.x

    Article  Google Scholar 

  36. Liu, H.C., Jeng, B.C., Yih, J.M., Yu, Y.K.: Fuzzy c-means algorithm based on standard Mahalanobis distances. Proc. Int. Symp. Inf. Process 15, 581–595 (2009)

    Google Scholar 

  37. Zhao, X., Li, Y., Zhao, Q.: Mahalanobis distance based on fuzzy clustering algorithm for image segmentation. Digit. Signal Process. 43, 8–16 (2015)

    Article  Google Scholar 

  38. Corless, R.M., Gonnet, G.H., Knuth, D.: On the Lambertw function. In: Advances in computational mathematics, p. 329–359 (1996) https://doi.org/10.1007/BF02124750

    Article  MathSciNet  Google Scholar 

  39. Pal, N.R., Bezdek, J.C.: Correction to on cluster validity for the fuzzy c-means model (1997)

  40. Bezdek, J.C.: A physical interpretation of fuzzy isodata. IEEE Trans. Syst. Man Cybern. 6(5), 387–389 (2007)

    MathSciNet  MATH  Google Scholar 

  41. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  42. Rand, W.M.: Objective criteria for the evaluation of clustering methods. Publ. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  43. Luo, M., Nie, F., Chang, X., Yang, Y., Hauptmann, A.G., Zheng, Q.: Adaptive unsupervised feature selection with structure regularization. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 944–956 (2018)

    Article  Google Scholar 

  44. Wen, Z., Liu, X., Chen, Y., Wu, W., Wei, W., Li, X.: Feature-derived graph regularized matrix factorization for predicting drug side effects. Neurocomputing 287, 154 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (61203176) and the Natural Science Foundation of Fujian Province (2013J05098, 2016J01756).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyan Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Wang, D., Pan, J. et al. A Novel Fuzzy c-Means Clustering Algorithm Using Adaptive Norm. Int. J. Fuzzy Syst. 21, 2632–2649 (2019). https://doi.org/10.1007/s40815-019-00740-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00740-9

Keywords