Skip to main content
Log in

An Integrated Model of Rough Set and Radial Basis Function Neural Network for Early Warning of Enterprise Human Resource Crisis

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Early warning of whether an enterprise will be faced with human resource crisis is a new hotspot in the study of enterprise crisis. This study contributes to early warning of enterprise human resource crisis by proposing an integrated model of Rough Set (RS) and Radial Basis Function (RBF) neural network, which overcomes the shortcomings of long training time and complex network structure in the traditional neural network methods. The proposed model fully exerts the advantages of the two methods of RS and RBF neural network. By means of RS for attribute reduction, the input data are reduced but still reflects the main information of the original data. And RBF neural network has simple network structure, strong nonlinear approximation ability, and fast convergence speed. First, this study sets up the enterprise human resource crisis early-warning index system. Second, 55 training samples are trained to construct the human resource crisis early-warning model, and 5 testing samples are used to test the forecasting effect of the model. Finally, this study compares the performance of RS–RBF neural network to those of Back Propagation (BP) neural network and RBF neural network and RS-BP neural network. The model comparison results show that the proposed model simplifies the structure of the neural network, speeds up the learning speed of the network, and improves forecasting efficiency and accuracy, which can give early warning of enterprise human resource crisis more effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jiang, Z., Li, D., Zhou, Y.: Talking about the Influence of Human Resource Management on Enterprise Development under the New Situation. Hum. Resour. Manag. Serv. 1, 1–4 (2018)

    Google Scholar 

  2. Fu, P.H., Jonathan, T., Bano, N.: Business in technological, marketing and social perspectives: a progress in strategic and human resource management. Int. Lett. Soc. Humanist. Sci. 85, 21–26 (2019). https://doi.org/10.18052/www.scipress.com/ilshs.85.21

    Article  Google Scholar 

  3. Cano-Kollmann, M., Hannigan, T.J., Mudambi, R.: Global innovation networks—organizations and people. J. Int. Manag. 24, 87–92 (2018). https://doi.org/10.1016/j.intman.2017.09.008

    Article  Google Scholar 

  4. Wang, Q., Liu, C.: Comprehensive evaluation of human resource crisis. Int. Conf. Manag. Sci. Ind. Eng. 2011, 775–778 (2011). https://doi.org/10.1109/msie.2011.5707523

    Article  Google Scholar 

  5. Dean, J., Tsai, T.-I.: Suicides spark inquiries: Apple, H-P to examine Asian supplier after string of deaths at factory. Wall Str. J. B1(1) (2010)

  6. Musk, E.: Tesla hit with “extensive” sabotage by rogue employee. The Business Times. Jun 20 (2018)

  7. Lekha, H.: Managing the talent crisis: a real challenge to human resource department. Excel Int. J. Multidiscip. Manag. Stud. 2, 162–168 (2012)

    Google Scholar 

  8. Schermuly, C.C., Draheim, M., Glasberg, R., Stantchev, V., Tamm, G., Hartmann, M., Hessel, F.: Human resource crises in German hospitals-an explorative study. Hum. Resour. Health. 13, 1–10 (2015). https://doi.org/10.1186/s12960-015-0032-4

    Article  Google Scholar 

  9. Geng, R., Bose, I., Chen, X.: Prediction of financial distress: an empirical study of listed Chinese companies using data mining. Elsevier, New York (2015)

    Google Scholar 

  10. Huang, T.H., Leu, Y., Pan, W.T.: Constructing ZSCORE-based financial crisis warning models using fruit fly optimization algorithm and general regression neural network. Kybernetes. 45, 650–665 (2016). https://doi.org/10.1108/K-08-2015-0208

    Article  MathSciNet  Google Scholar 

  11. Lei, Z., Yamada, Y., Huang, J., Xi, Y.: Intelligent early-warning support system for enterprise financial crisis based on case-based reasoning. J. Syst. Sci. Complex. 19, 538–546 (2006). https://doi.org/10.1007/s11424-006-0538-x

    Article  MATH  Google Scholar 

  12. Wang, Q., Hui, F., Wang, X., Ding, Q.: Research on early warning and monitoring algorithm of financial crisis based on fuzzy cognitive map. Cluster Comput. 7, 1–9 (2018). https://doi.org/10.1007/s10586-018-2219-7

    Article  Google Scholar 

  13. Gao, J., Alas, R.: Human resource crises in chinese enterprises. Bus. Theory Pract. 11, 335–344 (2010). https://doi.org/10.3846/btp.2010.36

    Article  Google Scholar 

  14. Sangsomboon, P., Yan, S.: Chinese small and medium-sized enterprises (SMEs) early warning human resources crisis. Int. J. Manag. Sci. Bus. Res. 3, 70–80 (2014)

    Google Scholar 

  15. Luo, F., She, L.: Forewarning management of enterprises’ human resource crises. Ind. Eng. Manag. 1, 10–14 (2003)

    Google Scholar 

  16. Li, F.: Analysis and quantitative research on early warning model for enterprise human resource based on extension theory. Rev. la Fac. Ing. 32, 507–514 (2017)

    Google Scholar 

  17. Geng, L.: Research on the early warning model of human resources crisis of travel agency in Henan Province based on BP neural network. China Manag. Inform. 17, 74–78 (2014)

    Google Scholar 

  18. Aviso, K.B., Mayol, A.P., Promentilla, M.A.B., Santos, J.R., Tan, R.R., Ubando, A.T., Yu, K.D.S.: Allocating human resources in organizations operating under crisis conditions: a fuzzy input-output optimization modeling framework. Resour. Conserv. Recycl. 128, 250–258 (2018). https://doi.org/10.1016/j.resconrec.2016.07.009

    Article  Google Scholar 

  19. Singh, P., Huang, Y.-P.: A high-order neutrosophic-neuro-gradient descent algorithm-based expert system for time series forecasting. Int. J. Fuzzy Syst. (2019). https://doi.org/10.1007/s40815-019-00690-2

    Article  Google Scholar 

  20. Plumb, A.P., Rowe, R.C., York, P., Brown, M.: Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithm. Eur. J. Pharm. Sci. 25, 395–405 (2005). https://doi.org/10.1016/j.ejps.2005.04.010

    Article  Google Scholar 

  21. Yang, Y., Chen, Y., Wang, Y., Li, C., Li, L.: Modelling a combined method based on ANFIS and neural network improved by DE algorithm: a case study for short-term electricity demand forecasting. Appl. Soft Comput. J. 49, 663–675 (2016). https://doi.org/10.1016/j.asoc.2016.07.053

    Article  Google Scholar 

  22. Zhang, Y., Ma, Y.: Application of supervised machine learning algorithms in the classification of sagittal gait patterns of cerebral palsy children with spastic diplegia. Comput. Biol. Med. 106, 33–39 (2019). https://doi.org/10.1016/j.compbiomed.2019.01.009

    Article  Google Scholar 

  23. Takase, T., Oyama, S., Kurihara, M.: Effective neural network training with adaptive learning rate based on training loss. Neural Netw. 101, 68–78 (2018). https://doi.org/10.1016/j.neunet.2018.01.016

    Article  Google Scholar 

  24. Tzuc, O.M., Bassam, A., Ricalde, L.J., Cruz May, E.: Sensitivity analysis with artificial neural networks for operation of photovoltaic systems. Artificial neural networks for engineering applications, pp. 127–138. Elsevier, New York (2019)

    Chapter  Google Scholar 

  25. Ding, S., Chen, J., Xu, X., Li, J.: Rough neural networks: a review. J. Comput. Inf. Syst. 7, 2338–2346 (2011)

    Google Scholar 

  26. Yasdi, R.: Combining rough sets learning- and neural learning-method to deal with uncertain and imprecise information. Neurocomputing. 7, 61–84 (1995). https://doi.org/10.1016/0925-2312(93)E0046-G

    Article  MATH  Google Scholar 

  27. Liao, H., Ding, S., Wang, M., Ma, G.: An overview on rough neural networks. Neural Comput. Appl. 27, 1805–1816 (2016). https://doi.org/10.1007/s00521-015-2009-6

    Article  Google Scholar 

  28. Cao, Y., Chen, X., Wu, D.D., Mo, M.: Early warning of enterprise decline in a life cycle using neural networks and rough set theory. Expert Syst. Appl. 38, 6424–6429 (2011). https://doi.org/10.1016/j.eswa.2010.09.138

    Article  Google Scholar 

  29. Xiao, Z., Ye, S.J., Zhong, B., Sun, C.X.: BP neural network with rough set for short term load forecasting. Expert Syst. Appl. 36, 273–279 (2009). https://doi.org/10.1016/j.eswa.2007.09.031

    Article  Google Scholar 

  30. Guo, Y.H., Hou, K.P.: Application of rough set-neural network algorithm to predict angle of stratum movement in metal deposit. Appl. Mech. Mater. 501–504, 47–50 (2014). https://doi.org/10.4028/www.scientific.net/AMM.501-504.47

    Article  Google Scholar 

  31. Tao, K.: A novel hybrid data mining method based on the RS and BP. In: Zhang, L., Lu, B.L. (eds.) Advances in neural networks, pp. 346–352. Springer, Berlin (2010)

    Google Scholar 

  32. Li, Y., Li, J., Zhong, J.: Research on modelling and optimisation of RBF neural network based on particle filter. Int. J. Model. Identif. Control. 11, 218–223 (2010). https://doi.org/10.1504/IJMIC.2010.037033

    Article  Google Scholar 

  33. Jia, W., Zhao, D., Ding, L.: An optimized RBF neural network algorithm based on partial least squares and genetic algorithm for classification of small sample. Appl. Soft Comput. J. 48, 373–384 (2016). https://doi.org/10.1016/j.asoc.2016.07.037

    Article  Google Scholar 

  34. Lei, L.: Wavelet neural network prediction method of stock price trend based on rough set attribute reduction. Appl. Soft Comput. J. 62, 923–932 (2018). https://doi.org/10.1016/j.asoc.2017.09.029

    Article  Google Scholar 

  35. Ding, S., Ma, G., Shi, Z.: A rough RBF neural network based on weighted regularized extreme learning machine. Neural Process. Lett. 40, 245–260 (2014). https://doi.org/10.1007/s11063-013-9326-5

    Article  Google Scholar 

  36. Qiao, J., Meng, X., Li, W.: An incremental neuronal-activity-based RBF neural network for nonlinear system modeling. Neurocomputing. 302, 1–11 (2018). https://doi.org/10.1016/j.neucom.2018.01.001

    Article  Google Scholar 

  37. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982). https://doi.org/10.1007/BF01001956

    Article  MATH  Google Scholar 

  38. Beynon, M.J., Peel, M.J.: Variable precision rough set theory and data discretisation: an application to corporate failure prediction. Omega. 29, 561–576 (2001). https://doi.org/10.1016/S0305-0483(01)00045-7

    Article  Google Scholar 

  39. Yang, L., Zhang, X., Xu, W., Sang, B.: Multi-granulation rough sets and uncertainty measurement for multi-source fuzzy information system. Int. J. Fuzzy Syst. (2019). https://doi.org/10.1007/s40815-019-00667-1

    Article  MathSciNet  Google Scholar 

  40. Chelly Dagdia, Z., Zarges, C., Schannes, B., Micalef, M., Galiana, L., Rolland, B., de Fresnoye, O., Benchoufi, M.: Rough Set Theory as a Data Mining Technique: A Case Study in Epidemiology and Cancer Incidence Prediction. In: Machine Learning and Knowledge Discovery in Databases. pp. 440–455 (2019)

    Chapter  Google Scholar 

  41. Chiaselotti, G., Gentile, T., Infusino, F.: Decision systems in rough set theory: a set operatorial perspective. J. Algebr. Its Appl. 18, 1–48 (2019). https://doi.org/10.1142/S021949881950004X

    Article  MathSciNet  MATH  Google Scholar 

  42. Fan, T.F., Liu, D.R., Tzeng, G.H.: Rough set-based logics for multicriteria decision analysis. Eur. J. Oper. Res. 182, 340–355 (2007). https://doi.org/10.1016/j.ejor.2006.08.029

    Article  MathSciNet  MATH  Google Scholar 

  43. Yeh, C.C., Chi, D.J., Hsu, M.F.: A hybrid approach of DEA, rough set and support vector machines for business failure prediction. Expert Syst. Appl. 37, 1535–1541 (2010). https://doi.org/10.1016/j.eswa.2009.06.088

    Article  Google Scholar 

  44. Hamouda, S.K.M., Wahed, M.E., Alez, R.H., Riad, K.: Robust breast cancer prediction system based on rough set theory at National Cancer Institute of Egypt. Comput. Methods Programs Biomed. 153, 259–268 (2018). https://doi.org/10.1016/j.cmpb.2017.10.016

    Article  Google Scholar 

  45. Shyng, J.Y., Shieh, H.M., Tzeng, G.H.: Compactness rate as a rule selection index based on Rough Set Theory to improve data analysis for personal investment portfolios. Appl. Soft Comput. 11, 3671–3679 (2011). https://doi.org/10.1016/j.asoc.2011.01.038

    Article  Google Scholar 

  46. Shi, Z.C., Xia, Y.X., Yu, C.G., Zhou, J.Z.: The discretization algorithm based on rough set and its application. Appl. Mech. Mater. 416–417, 1399–1403 (2013). https://doi.org/10.4028/www.scientific.net/AMM.416-417.1399

    Article  Google Scholar 

  47. Valdés, J.J., Romero, E., Barton, A.J.: Data and knowledge visualization with virtual reality spaces, neural networks and rough sets: application to cancer and geophysical prospecting data. Expert Syst. Appl. 39, 13193–13201 (2012). https://doi.org/10.1016/j.eswa.2012.05.082

    Article  Google Scholar 

  48. Tiwari, A.K., Shreevastava, S., Som, T., Shukla, K.K.: Tolerance-based intuitionistic fuzzy-rough set approach for attribute reduction. Expert Syst. Appl. 101, 205–212 (2018). https://doi.org/10.1016/j.eswa.2018.02.009

    Article  Google Scholar 

  49. Mi, J., Wu, W., Zhang, W.: Approaches to knowledge reduction based on variable precision rough set model. Inf. Sci. (Ny) 159, 255–272 (2004). https://doi.org/10.1016/j.ins.2003.07.004

    Article  MathSciNet  MATH  Google Scholar 

  50. Lin, P.: A discernibility matrix for the topological reduction. Int. J. Mach. Learn. Cybern. 3, 307–311 (2012). https://doi.org/10.1007/s13042-011-0064-6

    Article  Google Scholar 

  51. Cheng, Y., Zheng, Z., Wang, J., Yang, L., Wan, S.: Attribute reduction based on genetic algorithm for the coevolution of meteorological data in the industrial internet of things. Wirel. Commun. Mob. Comput. 2019, 1–8 (2019). https://doi.org/10.1155/2019/3525347

    Article  Google Scholar 

  52. Xu, F.F., Miao, D.Q., Wei, L.: Fuzzy-rough attribute reduction via mutual information with an application to cancer classification. Comput. Math. with Appl. 57, 1010–1017 (2009). https://doi.org/10.1016/j.camwa.2008.10.027

    Article  MATH  Google Scholar 

  53. Broomhead, D.S., Lowe, D.: Radial basis functions, multi-variable functional interpolation and adaptive networks. R. Signals Radar Establ. Malvern (United Kingdom). 728–734 (1988)

  54. Broomhead, D.S., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex Syst. 2, 321–355 (1988)

    MathSciNet  MATH  Google Scholar 

  55. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3, 246–257 (1991). https://doi.org/10.1162/neco.1991.3.2.246

    Article  Google Scholar 

  56. Montazer, G.A., Khoshniat, H., Fathi, V.: Improvement of RBF neural networks using Fuzzy-OSD algorithm in an online radar pulse classification system. Appl. Soft Comput. 13, 3831–3838 (2013). https://doi.org/10.1016/j.asoc.2013.04.021

    Article  Google Scholar 

  57. Taki, M., Rohani, A., Soheili-Fard, F., Abdeshahi, A.: Assessment of energy consumption and modeling of output energy for wheat production by neural network (MLP and RBF) and Gaussian process regression (GPR) models. J. Clean. Prod. 172, 3028–3041 (2018). https://doi.org/10.1016/j.jclepro.2017.11.107

    Article  Google Scholar 

  58. Wang, Y., Lin, Q., Wang, X., Zhou, F.: Adaptive PD control based on RBF neural network for a wire-driven parallel robot and prototype experiments. Math. Probl. Eng. 2019, 1–15 (2019). https://doi.org/10.1155/2019/6478506

    Article  MathSciNet  Google Scholar 

  59. Oh, S.K., Kim, W.D., Pedrycz, W.: Design of radial basis function neural network classifier realized with the aid of data preprocessing techniques: design and analysis. Int. J. Gen Syst 45, 434–454 (2016). https://doi.org/10.1080/03081079.2015.1072523

    Article  MathSciNet  MATH  Google Scholar 

  60. Machavaram, R., Krishnapillai, S.: Identification of crack in a structural member using improved radial basis function (IRBF) neural networks. Int. J. Intell. Comput. Cybern. 6, 182–211 (2013). https://doi.org/10.1108/IJICC-May-2012-0025

    Article  MathSciNet  Google Scholar 

  61. Hou, M., Han, X.: The multidimensional function approximation based on constructive wavelet RBF neural network. Appl. Soft Comput. J. 11, 2173–2177 (2011). https://doi.org/10.1016/j.asoc.2010.07.016

    Article  Google Scholar 

  62. Etemad, S.A., Arya, A.: Classification and translation of style and affect in human motion using RBF neural networks. Neurocomputing. 129, 585–595 (2014). https://doi.org/10.1016/j.neucom.2013.09.001

    Article  Google Scholar 

  63. Chen, D., Han, W.: Prediction of multivariate chaotic time series via radial basis function neural network. Complexity. 18, 55–66 (2013). https://doi.org/10.1002/cplx.21441

    Article  Google Scholar 

  64. Si, L., Liu, X.H., Tan, C., Wang, Z.: Bin: a novel classification approach through integration of rough sets and back-propagation neural network. J. Appl. Math. 2014, 1–11 (2014). https://doi.org/10.1155/2014/797432

    Article  Google Scholar 

  65. Affonso, C., Sassi, R.J., Barreiros, R.M.: Biological image classification using rough-fuzzy artificial neural network. Expert Syst. Appl. 42, 9482–9488 (2015). https://doi.org/10.1016/j.eswa.2015.07.075

    Article  Google Scholar 

  66. Zhu, Y., Wang, G.: Application and analysis of RBF neural network for burr prediction in micro-machining. Appl. Mech. Mater. 37–38, 171–175 (2010). https://doi.org/10.4028/www.scientific.net/AMM.37-38.171

    Article  Google Scholar 

Download references

Acknowledgements

Supported by “the Fundamental Research Funds for the Central Universities”, of the South-Central University for Nationalities (CSY19063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Li.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G. An Integrated Model of Rough Set and Radial Basis Function Neural Network for Early Warning of Enterprise Human Resource Crisis. Int. J. Fuzzy Syst. 21, 2462–2471 (2019). https://doi.org/10.1007/s40815-019-00758-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00758-z

Keywords

Navigation