Skip to main content
Log in

Novel Approach of Obtaining Dynamic Multi-attribute Weight for Intuitionistic Fuzzy Environment Based on Fractional Integrals

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Although there are many methods to obtain attribute weights in dynamic fuzzy environment, most of them assume attribute weights to obey predetermined distribution functions or constraints, which make them impossible to accurately describe the decision-making process and get reasonable results. In order to solve this problem, fractional integral with memory and heredity is introduced. Decision-makers’ risk preference information and the amount of useful information given by attributes are both considered to effectively address dynamic multi-attribute decision-making problems in intuitionistic fuzzy. Then, a value function is designed to accurately describe the decision-makers’ risk preference information and a multi-stage dynamic reference point setting method for intuitionistic fuzzy environment is proposed. Next, a method for obtaining dynamic attribute weights for intuitionistic fuzzy environment is given. By considering the background information of alternatives, a dynamic psychological distance measure for intuitionistic fuzzy set is produced. Based on the proposed dynamic psychological distance measure and TOPSIS, a dynamic multi-attribute decision-making method for intuitionistic fuzzy environment is given. Finally, two examples are given to illustrate the effectiveness of the method and the influence of the parameters is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    MATH  Google Scholar 

  2. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)

    MATH  Google Scholar 

  3. Ai, Z.H., Xu, Z.S.: Multiple definite integrals of intuitionistic fuzzy calculus and isomorphic mappings. IEEE Trans. Fuzzy Syst. 26, 670–680 (2018)

    Google Scholar 

  4. Garg, H., Kumar, K.: An advanced study on the similarity measures of intuitionistic fuzzy sets based on the set pair analysis theory and their application in decision making. Soft. Comput. 22, 1–12 (2018)

    MATH  Google Scholar 

  5. Kumar, K., Garg, H.: Connection number of set pair analysis based TOPSIS method on intuitionistic fuzzy sets and their application to decision making. Appl. Intell. 48, 2112–2119 (2018)

    Google Scholar 

  6. Bali, O., Dagdeviren, M., Gumus, S.: An integrated dynamic intuitionistic fuzzy MADM approach for personnel promotion problem. Kybernetes 44, 1422–1436 (2015)

    MathSciNet  Google Scholar 

  7. Vesna, C., Simona, S.Z.: A multiple-criteria approach to human resource management assessment in organizations with respect to industry. Kybernetes 46, 419–432 (2017)

    Google Scholar 

  8. Kou, G., Lin, C.S.: A cosine maximization method for the priority vector derivation in AHP. Eur. J. Oper. Res. 235, 225–232 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Yang, X., Li, Y.L.: Dynamic assessment of environmental risk for Yangtze River basin using objective weighting method. J. Univ. Chin. Acad. Sci. 32, 349–355 (2015)

    Google Scholar 

  10. Yan, Y., Suo, B.: A combined weighting method based on hybrid of interval evidence fusion and random sampling. Discrete Dyn. Nat. Soc. 2017, 1–8 (2017)

    MATH  Google Scholar 

  11. Li, G.X., Kou, G., Peng, Y.: Dynamic fuzzy multiple criteria decision making for performance evaluation. Technol. Econ. Dev. Econ. 21, 713–727 (2015)

    Google Scholar 

  12. Xu, Z.S., Zhao, N.: Information fusion for intuitionistic fuzzy decision making: an overview. Inf. Fusion 28, 10–23 (2016)

    Google Scholar 

  13. Zhang, L., Zhou, W.D.: Sparse ensembles using weighted combination methods based on linear programming. Pattern Recogn. 44, 97–106 (2011)

    MATH  Google Scholar 

  14. Hu, T.T., He, Z., Zhang, X.J., Zhong, S.M., Zhong, S.: Global synchronization of timeinvariant uncertainty fractional-order neural networks with time delay. Neurocomputing 339, 45–58 (2019)

    Google Scholar 

  15. Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 229–307 (1984)

    MathSciNet  MATH  Google Scholar 

  16. Hu, T.T., Zhang, X.J., Zhong, S.M.: Global asymptotic synchronization of nonidentical fractional-order neural networks. Neurocomputing 313, 39–46 (2018)

    Google Scholar 

  17. Baumann, G.: Fractional calculus: application and results. Biophys. J. 56, 955–966 (2018)

    Google Scholar 

  18. Liu, P., Jin, F., Zhang, X., Su, Y., Wang, M.H.: Research on the multi-attribute decision-making under risk with interval probability based on prospect theory and the uncertain linguistic variables. Knowl.-Based Syst. 24, 554–561 (2011)

    Google Scholar 

  19. Hu, J., Liu, Y.: Dynamic stochastic multi-criteria decision making method based on cumulative prospect theory and set pair analysis. Syst. Eng. Procedia 1, 432–439 (2011)

    Google Scholar 

  20. Liu, P.D.: Method for multi-attribute decision-making under risk with the uncertain linguistic variables based on prospect theory. Control Decis. 26, 893–897 (2011)

    MathSciNet  Google Scholar 

  21. Nosofsky, R.A., Zaki, S.R.: Exemplar and prototype models revisited: response strategies, selective attention, and stimulus generalization. J. Exp. Psychol. Learn. Mem. Cogn. 28, 924–940 (2002)

    Google Scholar 

  22. Nosofsky, R.M.: Attention, similarity, and the identification-categorization relationship. J. Exp. Psychol. Gen. 115, 39–61 (1986)

    Google Scholar 

  23. Fei, L.G., Feng, Y.Q., Liu, L.N., Mao, W.C.: On intuitionistic fuzzy decision-making using soft likelihood functions. Int. J. Intell. Syst. 34, 1–18 (2019)

    Google Scholar 

  24. Fei, L.G., Wang, H., Chen, L., Deng, Y.: A new vector valued similarity measure for intuitionistic fuzzy sets based. Iran. J. Fuzzy Syst. 16, 113–126 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 114, 505–518 (2000)

    MathSciNet  MATH  Google Scholar 

  26. Wang, W., Xin, X.: Distance measure between intuitionistic fuzzy sets. Pattern Recogn. Lett. 26, 2063–2069 (2005)

    Google Scholar 

  27. Wang, Y.Q., Song, C.S., Xiong, Z.: Coupling coordination analysis of urban land intensive use benefits based on TOPSIS method in Xianning city. Adv. Mater. Res. 1073–1076, 1387–1392 (2014)

    Google Scholar 

  28. Jain, V., Sangaiah, A.K., Sakhuja, S., Thoduka, N., Aggarwal, R.: Supplier selection using fuzzy AHP and TOPSIS: a case study in the Indian automotive industry. Neural Comput. Appl. 29, 555–564 (2018)

    Google Scholar 

  29. Xin, G.X., Yang, C.X., Yang, Q.Y., Li, C.H., Wei, C.F.: Post-evaluation of well-facilitied capital farmland construction based on entropy weight method and improved TOPSIS model. Trans. Chin. Soc. Agric. Eng. 33, 238–249 (2017)

    Google Scholar 

  30. Xu, Z.S., Yager, R.R.: Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen Syst 35, 417–433 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Facchinetti, G., Ricci, R.G., Muzzioli, S.: Note on ranking fuzzy triangular numbers. Int. J. Intell. Syst. 13, 613–622 (1998)

    Google Scholar 

  32. Kahneman, D., Tversky, A.: Prospect theory: analysis of decision under risk. Econometrica 47, 263–291 (1979)

    MathSciNet  MATH  Google Scholar 

  33. Kobberling, V., Wakker, P.P.: An index of loss aversion. J. Econ. Theory 122, 119–131 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Kontek, K.: On mental transformations. J. Neurosci. Psychol. Econ. 4, 235–253 (2011)

    Google Scholar 

  35. Hao, Z.N., Xu, Z.S., Zhao, H., Fujita, H.: A dynamic weight determination approach based on the intuitionistic fuzzy bayesian network and its application to emergency decision making. IEEE Trans. Fuzzy Syst. 26, 1893–1907 (2018)

    Google Scholar 

  36. Scholten, M., Read, D.: Prospect theory and the forgotten fourfold pattern of risk preferences. J. Risk Uncertain. 48, 67–83 (2014)

    Google Scholar 

  37. Wang, L.L., Nie, F.: Multi-stage intuitionistic fuzzy number decision-making methods based on prospect theory. Fire Control Command Control 42, 6–9 (2017)

    Google Scholar 

  38. Hao, J.J., Zhu, J.J., Liu, S.F.: A method for multi-stage stochastic multi-criteria decision making concerning prospect theory. Chin. J. Manag. Sci. 23, 73–81 (2015)

    Google Scholar 

  39. Ye, J.: Fuzzy decision-making method based on the weighted correlation coefficient under intuitionistic fuzzy environment. Eur. J. Oper. Res. 205, 202–204 (2010)

    MATH  Google Scholar 

  40. Fishburn, P.C.: Utility theory. Manage. Sci. 14, 335–378 (1968)

    MATH  Google Scholar 

  41. Chen, Y.J., He, H.Y., Zhang, S.L.: A new algebra interpolation polynomial without Runge phenomenon. Appl. Mech. Mater. 303–306, 1085–1088 (2013)

    Google Scholar 

  42. Berkowitsch, N.A., Scheibehenne, B., Rieskamp, J., Matthaus, M.: A generalized distance function for preferential choices. Br. J. Math. Stat. Psychol. 68, 310–325 (2015)

    MATH  Google Scholar 

  43. Huber, J., Payne, J.W., Puto, C.: Adding asymmetrically dominated alternatives-violations of regularity and the similarity hypothesis. J. Consum. Res. 9, 90–98 (1982)

    Google Scholar 

  44. Rooderkerk, R.P., Van Heerde, H.J., Bijmolt, T.H.A.: Incorporating context effects into a choice model. J. Mark. Res. 48, 767–780 (2011)

    Google Scholar 

  45. Thomas, M., Tsai, C.I.: Psychological distance and subjective experience: how distancing reduces the feeling of difficulty. J. Consum. Res. 39, 324–340 (2012)

    Google Scholar 

  46. Du, W.S., Hu, B.Q.: Aggregation distance measure and its induced similarity measure between intuitionistic fuzzy sets. Pattern Recogn. Lett. 21, 1–7 (2015)

    Google Scholar 

  47. Williams, L.E., Stein, R., Galguera, L.: The distinct affective consequences of psychological distance and construal level. J. Consum. Res. 40, 1123–1138 (2014)

    Google Scholar 

  48. Hwang, C.L., Yoon, K.: Multiple Attributes Decision Making Methods and Applications. Springer, Berlin (1981)

    MATH  Google Scholar 

  49. Fu, Q.F.: Study on TOPSIS method. J. Xi’an Univ. Sci. Technol. 28, 190–193 (2008)

    Google Scholar 

  50. Xu, Z.S., Cai, X.Q.: Intuitionistic Fuzzy Information Aggregation. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  51. Cheng, T., Wu, F.: A dynamic decision making methodology for emergency response. J. Inf. Comput. Sci. 11, 2655–2662 (2014)

    Google Scholar 

  52. Park, J.H., Cho, H.J., Kwun, Y.C.: Extension of the VIKOR method to dynamic intuitionistic fuzzy multiple attribute decision making. Comput. Math. Appl. 65, 731–744 (2013)

    MathSciNet  MATH  Google Scholar 

  53. Xu, Z.S., Yager, R.R.: Dynamic intuitionistic fuzzy multiattribute decision making. Int. J. Approx. Reason. 48, 246–262 (2008)

    MATH  Google Scholar 

  54. Wei, G.W.: Some geometric aggregation functions and their application to dynamic multiple attribute decision making in the intuitionist fuzzy setting. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 17, 179–196 (2009)

    MATH  Google Scholar 

  55. Gumus, S., Bali, O.: Dynamic aggregation operators based on intuitionistic fuzzy tools and einstein operations. Fuzzy Inf. Eng. 9, 45–65 (2017)

    Google Scholar 

  56. Liu, Y., Liu, J., Qin, Y.: Dynamic intuitionistic fuzzy multiattribute decision making based on evidential reasoning and MDIFWG operator. J. Intell. Fuzzy Syst. 36, 5973–5987 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Project of Chongqing Municipal Education Committee (Grant No. KJQN201800624) of China, the Pro- ject of Humanities and Social Sciences planning fund of Ministry of Education (18YJA630022) of China, and the National Natural Science Foundation of China (Grant No. 11671001, 61472056)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Li, Y. & Yang, J. Novel Approach of Obtaining Dynamic Multi-attribute Weight for Intuitionistic Fuzzy Environment Based on Fractional Integrals. Int. J. Fuzzy Syst. 22, 242–256 (2020). https://doi.org/10.1007/s40815-019-00765-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00765-0

Keywords

Navigation