Skip to main content
Log in

Practical Finite-Time Fuzzy Control for Hamiltonian Systems via Adaptive Event-Triggered Approach

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper is to present our new results on practical finite-time fuzzy control scheme for a class of Hamiltonian systems by an adaptive event-triggered approach. An unknown function of the system is approximated by an adaptive fuzzy system. According to a semi-global practical finite-time stability criterion, a novel adaptive fuzzy finite-time controller is presented. In the interest of saving resources, an event-triggered approach is developed where the controller is updated under the respective triggering conditions. Based on the special structure of Hamiltonian systems and Lyapunov theory, a sufficient condition is obtained so that the states of original systems converge to a small neighborhood containing the origin in a finite time. Meanwhile, with the proposed controller, there exists a positive lower bound for the interexecution time, and the Zeno phenomenon is avoided. The design processes of the proposed controller, adaptive law and event-triggered conditions are also proved by a circuit system simulation example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang, M., Borja, P., Ortega, R., et al.: PID passivity-based control of port-Hamiltonian systems. IEEE Trans. Autom. Control 63(4), 1032–1044 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Nageshrao, S.P., Lopes, G.A.D., Jeltsema, D., et al.: Port-Hamiltonian systems in adaptive and learning control: a survey. IEEE Trans. Autom. Control 61(5), 1223–1238 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Schiffer, J., Fridman, E., Ortega, R., et al.: Stability of a class of delayed port-Hamiltonian systems with application to microgrids with distributed rotational and electronic generation. Automatica 74(12), 71–79 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Yaghmaei, A., Yazdanpanah, M.J.: Output control design and separation principle for a class of port-Hamiltonian systems. Int. J. Robust Nonlinear Control 29(4), 867–881 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Liu, X., Liao, X.: Fixed-time stabilization control for port-Hamiltonian systems. Nonlinear Dyn. 96(2), 1497–1509 (2019)

    Google Scholar 

  6. Sun, W., Fu, B.: Adaptive control of time-varying uncertain nonlinear systems with input delay: a Hamiltonian approach. IET Control Theory Appl. 15(10), 1844–1858 (2016)

    Google Scholar 

  7. Sun, W., Wu, Y., Wang, L.: Trajectory tracking of constrained robotic systems via a hybrid control strategy. Neurocomputing 330, 188–195 (2019)

    Google Scholar 

  8. Sun, W., Peng, L.: Robust adaptive control of uncertain stochastic Hamiltonian systems with time varying delay. Asian J. Control 18(2), 642–651 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Haddad, W.M., Rajpurohit, T., Jin, X.: Energy-based feedback control for stochastic port-controlled Hamiltonian systems. Automatica 97, 134–142 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Jagtap, P., Zamani, M.: Backstepping design for incremental stability of stochastic Hamiltonian systems with jumps. IEEE Trans. Autom. Control 63(1), 255–261 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43(5), 678–682 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Zhu, Z., Xia, Y., Fu, M.: Attitude stabilization of rigid spacecraft with finite-time convergence. Int. J. Robust Nonlinear Control 21(6), 686–702 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Zhao, H., Niu, Y.: Finite-time sliding mode control of switched systems with one-sided Lipschitz nonlinearity. J. Frankl. Inst. (2019). https://doi.org/10.1016/j.jfranklin.2019.05.019

    Article  Google Scholar 

  14. Yang, R., Wang, Y.: Finite-time stability analysis and \(H_\infty \) control for a class of nonlinear time-delay Hamiltonian systems. Automatica 49(2), 390–401 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Sun, L., Feng, G., Wang, Y.: Finite-time stabilization and \(H_\infty \) control for a class of nonlinear Hamiltonian descriptor systems with application to affine nonlinear descriptor systems. Automatica 50(8), 2090–2097 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Fu, B., Li, S., Guo, L., et al.: Finite-time stabilization of port-controlled Hamiltonian systems with nonvanishing disturbances. Trans. Inst. Meas. Control 40(10), 2973–2981 (2018)

    Google Scholar 

  17. Yang, R., Sun, L., Zhang, G., et al.: Finite-time stability and stabilization of nonlinear singular time-delay systems via Hamiltonian method. J. Frankl. Inst. (2019). https://doi.org/10.1016/j.jfranklin.2019.04.033

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, B., Liu, X.P., Ge, S.S., et al.: Adaptive fuzzy control of a class of nonlinear systems by fuzzy approximation approach. IEEE Trans. Fuzzy Syst. 20(6), 1012–1021 (2012)

    Google Scholar 

  19. Li, Y., Shao, X., Tong, S.: Adaptive fuzzy prescribed performance control of non-triangular structure nonlinear systems. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2937046

    Article  Google Scholar 

  20. Zhang, T., Ge, S.S.: Adaptive neural network tracking control of MIMO nonlinear systems with unknown dead zones and control directions. IEEE Trans. Neural Netw. 20(3), 483–497 (2009)

    Google Scholar 

  21. Van Kien, C., Son, N.N., Anh, H.P.H.: Observer-based adaptive fuzzy decentralized control of uncertain large-scale nonlinear systems with full state constraints. Int. J. Fuzzy Syst. 21(3), 755–768 (2019)

    MathSciNet  Google Scholar 

  22. Zhang, Q., Zhai, D., Dong, J.: Adaptive fuzzy sliding mode control for nonlinear uncertain SISO system optimized by differential evolution algorithm. Int. J. Fuzzy Syst. 21(4), 1085–1103 (2019)

    MathSciNet  Google Scholar 

  23. Wang, Z., Xu, Y., Lu, R., et al.: Finite-time state estimation for coupled Markovian neural networks with sensor nonlinearities. IEEE Trans. Neural Netw. Learn. Syst. 28(3), 630–638 (2017)

    MathSciNet  Google Scholar 

  24. Wang, F., Chen, B., Liu, X., et al.: Finite-time adaptive fuzzy tracking control design for nonlinear systems. IEEE Trans. Fuzzy Syst. 26(3), 1207–1216 (2018)

    Google Scholar 

  25. Sun, Y., Chen, B., Lin, C., et al.: Finite-time adaptive control for a class of nonlinear systems with nonstrict feedback structure. IEEE Trans. Fuzzy Syst. 48(10), 2774–2781 (2018)

    Google Scholar 

  26. Li, K., Tong, S.: Fuzzy adaptive practical finite-time control for time delays nonlinear systems. Int. J. Fuzzy Syst. 21(4), 1013–1025 (2019)

    MathSciNet  Google Scholar 

  27. Li, Y., Li, K., Tong, S.: Finite-time adaptive fuzzy output feedback dynamic surface control for MIMO nonstrict feedback systems. IEEE Trans. Fuzzy Syst. 27(1), 96–110 (2019)

    MathSciNet  Google Scholar 

  28. Xu, P., Li, Y., Tong, S.: Fuzzy adaptive finite time fault-tolerant control for multi-input and multi-output nonlinear systems with actuator faults. Int. J. Control Autom. Syst. 17(7), 1655–1665 (2019)

    Google Scholar 

  29. Li, Y.-X.: Finite time command filtered adaptive fault tolerant control for a class of uncertain nonlinear systems. Automatica 106, 117–123 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Li, Y., Li, H., Sun, W.: Event-triggered control for robust set stabilization of logical control networks. Automatica 95, 556–560 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Song, J., Niu, Y., Xu, J.: An event-triggered approach to sliding mode control of Markovian jump Lur’e systems under hidden mode detections. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2847315

    Article  Google Scholar 

  32. Wang, X., Lemmon, M.D.: Event-triggered in distributed networked control systems. IEEE Trans. Autom. Control 56(3), 586–601 (2011)

    MATH  Google Scholar 

  33. Girard, A.: Dynamic triggering mechanisms for event-triggered control. IEEE Trans. Autom. Control 60(7), 1992–1997 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Wang, S., Li, H., Li, Y., et al.: Event-triggered control for disturbance decoupling problem of mix-valued logical networks. J. Frankl. Inst. (2019). https://doi.org/10.1016/j.jfranklin.2019.10.005

    Article  MATH  Google Scholar 

  35. Wang, Y., Zheng, W.X., Zhang, H.: Dynamic event-based control of nonlinear stochastic systems. IEEE Trans. Autom. Control 62(12), 6544–6551 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Yuan, Y., Wang, Z., Guo, L.: Event-triggered strategy design for discrete-time nonlinear quadratic games with disturbance compensations: the noncooperative case. IEEE Trans. Syst. Man Cybern. Syst. 48(11), 1885–1896 (2018)

    Google Scholar 

  37. Wang, M., Wang, Z., Chen, Y., Sheng, W.: Adaptive neural event-triggered control for discrete-time strict-feedback nonlinear systems. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2921733

    Article  Google Scholar 

  38. Yi, X., Yang, T., Wu, J., et al.: Distributed event-triggered control for global consensus of multi-agent systems with input saturation. Automatica 100, 1–9 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Li, Y.-X., Yang, G.-H.: Observer-based fuzzy adaptive event-triggered control codesign for a class of uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. 26(3), 1589–1599 (2018)

    Google Scholar 

  40. Li, Y.X., Tong, S., Yang, G.H.: Observer-based adaptive fuzzy decentralized event-triggered control of interconnected nonlinear system. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/TCYB.2019.2894024

    Article  Google Scholar 

  41. Zhang, H., Yue, D., Yin, X., et al.: Finite-time distributed event-triggered consensus control for multi-agent systems. Inf. Sci. 339, 132–142 (2016)

    MATH  Google Scholar 

  42. Liu, J., Yu, Y., Wang, Q., et al.: Fixed-time event-triggered consensus control for multi-agent systems with nonlinear uncertainties. Neurocomputing 260, 497–504 (2017)

    Google Scholar 

  43. Wang, L., Wang, Z., Wei, G., et al.: Finite-time state estimation for recurrent delayed neural networks with component-based event-triggering protocol. IEEE Trans. Neural Netw. Learn. Syst. 29(4), 1046–1057 (2018)

    Google Scholar 

  44. Wang, Y., Li, C., Cheng, D.: Generalized Hamiltonian realization of time invariant nonlinear systems. Automatica 39, 1437–1443 (2003)

    MathSciNet  MATH  Google Scholar 

  45. Beckenbach, E., Bellman, R.: Inequalities, p. 15. Springer, New York (1965)

    MATH  Google Scholar 

  46. Peng, Z., Wang, D., Wang, J.: Predictor-based neural dynamic surface control for uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. Learn. Syst. 28(9), 2156–2167 (2017)

    MathSciNet  Google Scholar 

  47. Anderson, R.P., Milutinovi, D., Dimarogonas, D.V.: Self-triggered sampling for second-moment stability of state-feedback controlled SDE systems. Automatica 54, 8–15 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Heemels, W.P.M.H., Johansson, K.H., Tabuada, P.: An introduction to event-triggered and self-triggered control. In: Proceedings of 51th IEEE conference on decision and control, Maui, Hawail, USA (2012)

  49. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52(9), 1680–1685 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61703232, and in part by the Natural Science Foundation of Shandong Province under Grant ZR2017MF068 and ZR2017QF013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Lv, X. Practical Finite-Time Fuzzy Control for Hamiltonian Systems via Adaptive Event-Triggered Approach. Int. J. Fuzzy Syst. 22, 35–45 (2020). https://doi.org/10.1007/s40815-019-00773-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00773-0

Keywords

Navigation