Skip to main content
Log in

RETRACTED ARTICLE: Integral Backstepping Control of LPMSM Drive System Using Revised Recurrent Fuzzy NN and Mended Particle Swarm Optimization

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

This article was retracted on 16 February 2021

This article has been updated

Abstract

A linear permanent magnet synchronous motor (LPMSM) drive system is keeping in many nonlinear effects such as the external load force, the flux saturation, the cogging force, the column friction and Stribeck force, and the parameters variations. Due to the uncertainty effects the existing linear controllers can not achieve better control performances for the LPMSM drive system. To raise robustness under occurrence of uncertainty, the integral backstepping control system with hitting function is proposed for controlling the LPMSM drive system in accordance with the Lyapunov function. To improve larger chattering phenomenon under uncertainties effects, the integral backstepping control system with revised recurrent fuzzy neural network (RRFNN) and mended particle swarm optimization (MPSO) is proposed to operate the LPMSM drive system to raise robustness of system. The RRFNN is used to estimate the value of the external lumped force uncertainty. Moreover, the error compensation control with the error compensation mechanism is proposed to compensate the minimum reconstructed error of the error estimation law. Besides, four variable learning rates in the weights of the RRFNN are regulated by virtue of MPSO with segment regulation to speed-up parameter’s convergence. Finally, comparative performances through some tentative upshots are verified that the integral backstepping control system by virtue of RRFNN with MPSO has better control performances than those of the proposed methods for the LPMSM drive system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Change history

References

  1. Boldea, I., Nasar, S.A.: Linear Electric Actuators and Generators. Cambridge University Press, London (1997)

    Book  Google Scholar 

  2. Egami, T., Tsuchiya, T.: Disturbance suppression control with preview action of linear DC brushless motor. IEEE Trans. Ind. Electron. 42(5), 494–500 (1995)

    Article  Google Scholar 

  3. Sanada, M., Morimoto, S., Takeda, Y.: Interior permanent magnet linear synchronous motor for high-performance drives. IEEE Trans. Ind. Appl. 33(5), 966–972 (1997)

    Article  Google Scholar 

  4. Lin, C.H.: Precision motion control of a linear permanent magnet synchronous machine based on linear optical-ruler sensor and Hall sensor. Sensors 18(10), 3345 (2018)

    Article  Google Scholar 

  5. Kanellakopoulos, I., Kokotovic, P.V., Morse, A.S.: Systematic design of adaptive controller for feedback linearizable system. IEEE Trans. Autom. Control 36(11), 1241–1253 (1991)

    Article  MathSciNet  Google Scholar 

  6. Bartolini, G., Ferrara, A., Giacomini, L., Usai, E.: Peoperties of a combined adaptive/second-order sliding mode control algorithm for some classes of uncertain nonlinear systems. IEEE Trans. Autom. Control 45(7), 1334–1341 (2000)

    Article  Google Scholar 

  7. Lin, C.H.: A backstepping control of LSM drive systems using adaptive modified recurrent Laguerre OPNNUO. J. Power Electron. 16(2), 598–609 (2016)

    Article  Google Scholar 

  8. Lin, C.H.: Nonlinear backstepping control design of LSM drive system using adaptive modified recurrent Laguerre orthogonal polynomial network. Int. J. Control Autom. Syst. 15(2), 905–917 (2017)

    Article  Google Scholar 

  9. Wang, X., Song, J.: Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control. Commun. Nonlinear Sci. Numer. Simul. 14(8), 3351–3357 (2009)

    Article  Google Scholar 

  10. Wang, X., He, Y.: Projective synchronization of fractional order chaotic system based on linear separation. Phys. Lett. A 372(4), 435–441 (2008)

    Article  Google Scholar 

  11. Wang, X., Wang, M.: Dynamic analysis of the fractional-order Liu system and its synchronization. Chaos Interdiscip. J. Nonlinear Sci. 17(3), 033106 (2007)

    Article  Google Scholar 

  12. Lin, D., Wang, X.: Observer-based decentralized fuzzy neural sliding mode control for interconnected unknown chaotic systems via network structure adaptation. Fuzzy Sets Syst. 161(15), 2066–2080 (2010)

    Article  MathSciNet  Google Scholar 

  13. Wang, X., He, Y., Wang, M.: Chaos control of a fractional order modified coupled dynamos system. Nonlinear Anal. Theory Methods Appl. 71(12), 6126–6134 (2009)

    Article  MathSciNet  Google Scholar 

  14. Wang, Y., Zhang, H., Wang, X., Yang, D.: Networked synchronization control of coupled dynamic networks with time-varying delay. IEEE Trans. Syst. Man Cybern. Part B Cybern. 40(6), 1468–1479 (2010)

    Article  Google Scholar 

  15. Lin, C.H.: Hybrid recurrent wavelet neural network control of PMSM servo-drive system for electric scooter. Int. J. Control Autom. Syst. 12(1), 177–187 (2014)

    Article  Google Scholar 

  16. Lin, F.J., Lin, C.H.: On-line gain-tuning IP controller using RFNN for linear synchronous motor. IEEE Trans. Aerospace Electron. Syst. 37(2), 655–670 (2001)

    Article  Google Scholar 

  17. Tosunoğlu, N.G., Apaydın, A.: A new spatial algorithm based on adaptive fuzzy neural network for prediction of crustal motion velocities in earthquake research. Int. J. Fuzzy Syst. 20(5), 1656–1670 (2018)

    Article  Google Scholar 

  18. Yang, M.C., Wang, J.Z., Sun, T.Y.: EMD-based preprocessing with a fuzzy inference system and a fuzzy neural network to identify kiln coating collapse for predicting refractory failure in the cement process. Int. J. Fuzzy Syst. 20(8), 2640–2656 (2018)

    Article  Google Scholar 

  19. Lin, D., Wang, X., Nian, F., Zhang, Y.: Dynamic fuzzy neural networks modeling and adaptive backstepping tracking control of uncertain chaotic systems. Neurocomputing 73(16–18), 2873–2881 (2010)

    Article  Google Scholar 

  20. Lin, D., Wang, X.: Self-organizing adaptive fuzzy neural control for the synchronization of uncertain chaotic systems with random-varying parameters. Neurocomputing 74(12–13), 2241–2249 (2011)

    Article  Google Scholar 

  21. Kim, H.M., Han, S.I., Kim, J.S.: Precision position control of servo systems using adaptive back-stepping and recurrent fuzzy neural networks. J. Mech. Sci. Technol. 23(11), 3059–3070 (2009)

    Article  Google Scholar 

  22. Sheng, L.G., Gao, X., Zhang, L.: Robust adaptive backstepping sliding mode control for six-phase permanent magnet synchronous motor using recurrent wavelet fuzzy neural network. IEEE Access 5, 14502–14515 (2017)

    Article  Google Scholar 

  23. Kennedy, J., Eberhart, R.: Particle swarm optimization, pp. 1942–1948. Proc. IEEE Int. Conf. Neural Netw., Perth (1995)

    Google Scholar 

  24. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multi-dimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

    Article  Google Scholar 

  25. Shi, Y., Eberhart, R.C.: A modified particle swarm optimizer, pp. 69–73. Proc. IEEE Int. Conf. Evol. Comput., Anchorage (1998)

    Google Scholar 

  26. Akbari, R., Ziarati, K.: A rank based particle swarm optimization algorithm with dynamic adaptation. J. Comput. Appl. Math. 235(8), 2694–2714 (2010)

    Article  MathSciNet  Google Scholar 

  27. Lin, C.H.: Composite recurrent Laguerre orthogonal polynomials neural network dynamic control for continuously variable transmission system using altered particle swarm optimization. Nonlinear Dyn. 81(3), 1219–1245 (2015)

    Article  Google Scholar 

  28. Chen, C.C.: Optimization of zero-order TSK-type fuzzy system using enhanced particle swarm optimizer with dynamic mutation and special initialization. Int. J. Fuzzy Syst. 20(5), 1685–1698 (2018)

    Article  Google Scholar 

  29. Lin, C.H., Yu, C.Y.: Blend recurrent Gegenbauer OPNNAPSO control for a SynRM servo-drive CVT system, pp. 1060–1065. Proc. IEEE Conf. Ind. Electron. Appl., Wuhan (2018)

    Google Scholar 

  30. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  31. Astrom, K.J., Wittenmark, B.: Adaptive control. Addison-Wesley, New York (1995)

    MATH  Google Scholar 

  32. Ku, C.C., Lee, K.Y.: Diagonal recurrent neural networks for dynamic system control. IEEE Trans. Neural Netw. 6(1), 144–156 (1995)

    Article  Google Scholar 

  33. Lin, C.H.: Recurrent modified Elman neural network control of PM synchronous generator system using wind turbine emulator of PM synchronous servo motor drive. Int. J. Electr. Power Energy Syst. 52, 143–160 (2013)

    Article  Google Scholar 

  34. Lewis, F.L., Campos, J., Selmic R.: Neuro-fuzzy control of industrial systems with actuator nonlinearities. SIAM Front. Appl. Math. (FR), Society for Industrial and Applied Mathematics, Philadelphia (2002)

  35. Astrom, K.J., Hagglund, T., Controller, P.I.D.: Theory, Design, and Tuning. Instrument Society of America, Research Triangle Park, North Carolina (1995)

    Google Scholar 

  36. Hagglund, T., Astrom, K.J.: Revisiting the Ziegler-Nichols tuning rules for PI control. Asian J. Control 4(2), 364–380 (2002)

    Google Scholar 

  37. Hagglund, T., Astrom, K.J.: Revisiting the Ziegler- Nichols tuning rules for PI control-part II: the frequency response method. Asian J. Control 6(4), 469–482 (2004)

    Article  Google Scholar 

Download references

Funding

This research received the financial support of the Ministry of Science and Technology in Taiwan, R.O.C. through its Grant MOST 107-2221-E-239-021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Hong Lin.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s40815-021-01067-0

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CH. RETRACTED ARTICLE: Integral Backstepping Control of LPMSM Drive System Using Revised Recurrent Fuzzy NN and Mended Particle Swarm Optimization. Int. J. Fuzzy Syst. 22, 400–413 (2020). https://doi.org/10.1007/s40815-019-00775-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00775-y

Keywords

Navigation