Skip to main content
Log in

Takagi–Sugeno Fuzzy Neural Network Hysteresis Modeling for Magnetic Shape Memory Alloy Actuator Based on Modified Bacteria Foraging Algorithm

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

The magnetic shape memory alloy (MSMA)-based actuator, as a new type of actuator, has a great application prospect in the micro-precision positioning field. However, the input-to-output hysteresis nonlinearity largely hinders its wide application. In this paper, a Takagi–Sugeno fuzzy neural network (TSFNN) model based on the modified bacteria foraging algorithm (MBFA) is innovatively utilized to describe the complex hysteresis nonlinearity of the MSMA-based actuator, and the parameters of TSFNN are optimized by the MBFA. The TSFNN is a combination of the fuzzy-logic system and neural network; thus, it has the capability of approximating the nonlinear mapping function and self-adjustment and is suitable for hysteresis modeling. The MBFA, which can obtain better optimization values, is employed for the parameter identification procedure. To demonstrate the effectiveness of the proposed model, a TSFNN based on the gradient descent algorithm (GDA) is used for comparison. Experimental results clearly show that the proposed modeling method can accurately describe the hysteresis nonlinearity of the MSMA-based actuator and has significance for its future application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kohl, M., Gueltig, M., Pinneker, V., Yin, R., Wendler, F., Krevet, B.: Magnetic shape memory microactuators. Micromachines 5(4), 1135–1160 (2014)

    Google Scholar 

  2. Jani, J., Leary, M., Subic, A., Gibson, M.: A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014)

    Google Scholar 

  3. Zhang, Q.X., Fu, Q.H., Wang, L.P., Gao, Y.H.: Research and experimental analysis of damping characteristics of magnetic shape memory alloy. Trans. Electr. Electron. Mater. 19(4), 272–278 (2018)

    Google Scholar 

  4. Faran, E., Shilo, D.: Ferromagnetic shape memory alloys-challenges, applications, and experimental characterization. Exp. Tech. 40, 1005–1031 (2016)

    Google Scholar 

  5. Oonishi, A., Hirata, K., Yoo, B., Niguchi, N.: Frequency response characteristics for linear actuator made by NiMnGa shape memory alloy. Int. J. Appl. Electromagn. Mech. 39(1–4), 913–918 (2012)

    Google Scholar 

  6. Zhang, X.Y., Wang, Y., Wang, C.L., Su, C.-Y., Li, Z., Chen, X.K.: Adaptive estimated inverse output-feedback quantized control for piezoelectric positioning stage. IEEE. Trans. Cybern. 49(6), 2106–2118 (2019)

    Google Scholar 

  7. Yu, Y.W., Zhang, C., Zhou, M.L.: NARMAX model-based hysteresis modeling of magnetic shape memory alloy actuators. IEEE Trans. Nanotechnol. 19, 1–4 (2020)

    Google Scholar 

  8. Baghel, A., Kulkarni, S.: Parameter identification of the Jiles–Atherton hysteresis model using a hybrid technique. IET Electr. Power Appl. 6(9), 689–695 (2012)

    Google Scholar 

  9. Xu, R., Zhou, M.L.: Elman neural network-based identification of Krasnosel’skii–Pokrovskii model for magnetic shape memory alloys actuator. IEEE Trans. Magn. 53, Article ID 2002004 (2017)

    Google Scholar 

  10. Minorowicz, B., Nowak, A., Stefanski, F.: Hysteresis modelling in electromechanical transducer with magnetic shape memory alloy. Przeglad Elektrotechniczny 11, 244–247 (2014)

    Google Scholar 

  11. Tu, F.Q., Hu, S.M., Zhuang, Y.H., Lv, J., Wang, Y.X., Sun, Z.: Hysteresis curve fitting optimization of magnetic controlled shape memory alloy actuator. Actuators 5(4), 25 (2016)

    Google Scholar 

  12. Son, N.N., Anh, H.P.H.: Adaptive displacement online control of shape memory alloys actuator based on neural networks and hybrid differential evolution algorithm. Neurocomputing 166, 464–474 (2015)

    Google Scholar 

  13. Zhou, M.L., Wang, S.B., Gao, W.: Neural network model for hysteresis nonlinearity of magnetic shape memory alloy actuator. J. Comput. Theor. Nanosci. 10(12), 2931–2935 (2013)

    Google Scholar 

  14. Zhou, M.L., Wang, Y.F., Xu, R., Zhang, Q., Zhu, D.: Feed-forward control for magnetic shape memory alloy actuators based on the radial basis function neural network model. J. Appl. Biomater Funct. Mater. 15(suppl 1), 25–30 (2017)

    Google Scholar 

  15. Yilmaz, S., Oysal, Y.: Fuzzy wavelet neural network models for prediction and identification of dynamical systems. IEEE Trans. Neural Netw. Learn. Syst. 21(10), 1599–1609 (2010)

    Google Scholar 

  16. Lin, D., Wang, X.Y., Nian, F.Z., Zhang, Y.L.: Dynamic fuzzy neural networks modeling and adaptive backstepping tracking control of uncertain chaotic systems. Neurocomputing 73(16–18), 2873–2881 (2010)

    Google Scholar 

  17. Juang, C., Hsieh, C.: A locally recurrent fuzzy neural network with support vector regression for dynamic-system modeling. IEEE Trans. Fuzzy Syst. 18(2), 261–273 (2010)

    Google Scholar 

  18. Zhang, S., Jiang, H., Yin, Y., Xiao, W., Zhao, B.: The prediction of the gas utilization ratio based on TS fuzzy neural network and particle swarm optimization. Sensors 18(2), 625 (2018)

    Google Scholar 

  19. Liu, J., Yin, T., Xie, X., Tian, E., Fei, S.: Event-triggered state estimation for T–S fuzzy neural networks with stochastic cyber-Attacks. Int. J. Fuzzy Syst. 21(2), 532–544 (2019)

    MathSciNet  Google Scholar 

  20. Zhang, K., Qian, F., Liu, M.: A survey on fuzzy neural network technology. Inf. Control 32(5), 431–435 (2003)

    Google Scholar 

  21. Shah, H., Tairan, N., Garg, H., Ghazali, R.: Global gbest guided-artificial bee colony algorithm for numerical function optimization. Computers 7(4), 69 (2018)

    Google Scholar 

  22. Garg, H.: Solving structural engineering design optimization problems using an artificial bee colony algorithm. J. Ind. Manag. Opt. 10(3), 777–794 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Garg, H.: An efficient biogeography based optimization algorithm for solving reliability optimization problems. Swarm Evol. Comput. 24, 1–10 (2015)

    Google Scholar 

  24. Garg, H.: A hybrid GSA-GA algorithm for constrained optimization problems. Inf. Sci. 478, 499–523 (2019)

    Google Scholar 

  25. Garg, H.: A hybrid PSO-GA algorithm for constrained optimization problems. Appl. Math. Comput. 274, 292–305 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Haber, R.E., Beruvides, G., Quiza, R., Hernandez, A.: A simple multi-objective optimization based on the cross-entropy method. IEEE Access 5, 22272–22281 (2017)

    Google Scholar 

  27. Beruvides, G., Quiza, R., Haber, R.E.: Multi-objective optimization based on an improved cross-entropy method. A case study of a micro-scale manufacturing process. Inf. Sci. 334–335, 161–173 (2016)

    Google Scholar 

  28. La Fe-Perdomo, I., Beruvides, G., Quiza, R., Haber, R.E., Rivas, M.: Automatic selection of optimal parameters based on simple soft-computing methods: a case study of micromilling processes. IEEE Trans. Ind. Inf. 15(2), 800–811 (2019)

    Google Scholar 

  29. Chen, H., Zhu, Y., Hu, K.: Adaptive bacterial foraging optimization. Abstr. Appl. Anal. 2011, Article ID 108269 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Korani, W., Dorrah, H., Emara, H.: Bacterial foraging oriented by particle swarm optimization strategy for PID tuning. In: IEEE international symposium computational intelligence robotics automation (CIRA). pp. 445–450 (2009)

  31. Farhy, L.S.: Modeling of oscillations in endocrine networks with feedback. Method. Enzymol. 384, 54–81 (2004)

    Google Scholar 

  32. Wang, L., Tang, D.B.: An improved adaptive genetic algorithm based on hormone modulation mechanism for job-shop scheduling problem. Exp. Syst. Appl. 38(6), 7243–7250 (2011)

    Google Scholar 

  33. Sadeghzadeh, A., Asua, E., Feuchtwanger, J., Etxebarria, V., Garcia-Arribas, A.: Ferromagnetic shape memory alloy actuator enabled for nanometric position control using hysteresis compensation. Sens. Actuators Phys. 182, 122–129 (2012)

    Google Scholar 

  34. Sarawate, N., Dapino, M.: Dynamic sensing behavior of ferromagnetic shape memory Ni-Mn-Ga. Smart Mater. Struct. 18, Article ID 104014 (2009)

    Google Scholar 

  35. Schluter, K., Riccardi, L., Raatz, A.: An open-loop control approach for magnetic shape memory actuators considering temperature variations. Adv. Sci. Technol. 78, 119–124 (2013)

    Google Scholar 

  36. Lin, J.H., Chiang, M.H.: Tracking control of a magnetic shape memory actuator using an inverse Preisach model with modified fuzzy sliding mode control. Sensors 16(9), 1368 (2016)

    Google Scholar 

  37. Sutor, A., Rupitsch, S., Lerch, R.: A Preisach-based hysteresis model for magnetic and ferroelectric hysteresis. Appl. Phys. A 100(2), 425–430 (2010)

    Google Scholar 

  38. Minorowicz, B., Stefanski, F., Sedziak, D.: Hysteresis modeling and position control of actuator with magnetic shape memory alloy. In: International carpathian control conference, pp. 505–510 (2016)

  39. Minorowicz, B., Leonetti, G., Stefanski, F., Binetti, G., Naso, D.: Design, modelling and control of a micro-positioning actuator based on magnetic shape memory alloys. Smart Mater. Struct. 25, Article ID 075005 (2016)

    Google Scholar 

  40. Shakiba, S., Zakerzadeh, M., Ayati, M.: Experimental characterization and control of a magnetic shape memory alloy actuator using the modified generalized rate-dependent Prandtl–Ishlinskii hysteresis model. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 232(5), 506–518 (2018)

    Google Scholar 

  41. Zhou, M.L., He, S.B., Hu, B., Zhang, Q.: Modified KP model for hysteresis of magnetic shape memory alloy actuator. IETE Tech. Rev. 32(1), 29–36 (2015)

    Google Scholar 

  42. Riccardi, L., Naso, D., Janocha, H., Turchiano, B.: A precise positioning actuator based on feedback-controlled magnetic shape memory alloys. Mechatronics 22(5), 568–576 (2012)

    Google Scholar 

  43. Zhou, M.L., Zhang, Q.: Hysteresis model of magnetically controlled shape memory alloy based on a PID neural network. IEEE Trans. Magn. 51, Article ID 7301504 (2015)

    Google Scholar 

  44. Serpico, C., Visone, C.: Magnetic hysteresis modeling via feed-forward neural networks. IEEE Trans. Magn. 34(3), 623–628 (1998)

    Google Scholar 

  45. Tai, N., Ahn, K.: A hysteresis functional link artificial neural network for identification and model predictive control of SMA actuator. J. Process Control 22(4), 766–777 (2012)

    Google Scholar 

  46. Wang, H., Song, G.B.: Innovative NARX recurrent neural network model for ultra-thin shape memory alloy wire. Neurocomputing 134, 289–295 (2014)

    Google Scholar 

  47. Liu, Y., Yang, D.K., Nan, N., Li, G., Zhang, J.J.: Strong convergence analysis of batch gradient-based learning algorithm for training pi-sigma network based on TSK fuzzy models. Neural Process Lett. 43, 745–758 (2016)

    Google Scholar 

  48. Passino, K.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 22(3), 52–67 (2002)

    Google Scholar 

  49. Eberhart, R., Kennedy, J.: Particle swarm optimization. Proc. IEEE Int. Conf. Neural. Netw. 4, 1942–1948 (1995)

    Google Scholar 

  50. Roberge, V., Tarbouchi, M., Labonte, G.: Comparison of parallel genetic algorithm and particle swarm ptimization for real-time UAV path planning. IEEE Trans. Ind. Inf. 9(1), 132–141 (2013)

    Google Scholar 

  51. Sun, Z.Y., Bo, S., Xi, N., Yang, R.G., Hao, L.N., Chen, L.L.: Compensating asymmetric hysteresis for nanorobot motion control. In: Proceedings of the IEEE international conference robotics Automation. pp. 3501–3506 (2015)

  52. Sun, K.K., Qiu, J.B., Karimi, H.R., Gao, H.J.: A Novel finite-time control for nonstrict feedback saturated nonlinear systems with tracking error constraint. IEEE Trans. Syst. Man Cy.-S. 1, 1 (2019). https://doi.org/10.1109/TSMC.2019.2958072

    Article  Google Scholar 

  53. Sun, K.K., Mou, S.S., Qiu, J.B., Wang, T., Gao, H.J.: Adaptive fuzzy control for non-triangular structural stochastic switched nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. 27(8), 1587–1601 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 51675228 and the Program of Science and Technology Development Plan of Jilin Province of China under Grants 20180101052JC, 20190303020SF.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by [CZ], [YY], and [YW]. The manuscript was written by [CZ] and [MZ]. [MZ], [YY], and [YW] reviewed and edited this manuscript. The funding acquisition and supervision were performed by [MZ]. All authors read and approved the manuscript.

Corresponding author

Correspondence to Miaolei Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Yu, Y., Wang, Y. et al. Takagi–Sugeno Fuzzy Neural Network Hysteresis Modeling for Magnetic Shape Memory Alloy Actuator Based on Modified Bacteria Foraging Algorithm. Int. J. Fuzzy Syst. 22, 1314–1329 (2020). https://doi.org/10.1007/s40815-020-00826-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00826-9

Keywords

Navigation