Skip to main content

Advertisement

Log in

Towards Universal Control System for Powered Ankle–Foot Prosthesis: A Simulation Study

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In powered ankle–foot prostheses, multilevel hierarchical control systems are usually used with predetermined parameters (tuned during the prosthesis trial). Therefore, control systems cannot adaptively interact with terrains variation where control systems is most effective for ground level walking and less effective for ascending or descending stair/slop. In order to address the control system performance in ever-changing terrains, an adaptive mechanism should be included the control system structure. Here, we present a pilot study to illustrate the applicability of a genetic algorithm-based adaptive fuzzy logic control system. The design method could be divided into two stages: initial knowledge base and membership functions for the genetic pool on the basis of the analysis of biological ankle–foot behaviour. Additionally, the construction of genetic optimization mechanism rules and constraints (fitness function, mutation rats, replacement rate, etc.). Takagi–Sugeno–Kang fuzzy (TSK-fuzzy) inference system is selected because the system structure could depict the character of simple impedance control system. The control system and dynamic model were developed using C code and evaluated using MATLAB/Simulink (2019a).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cherelle, P., Mathijssen, G., Wang, Q., Vanderborght, B., Lefeber, D.: Advances in propulsive bionic feet and their actuation principles. Adv. Mech. Eng. 6, 984046 (2014)

    Article  Google Scholar 

  2. Tucker, M.R., Olivier, J., Pagel, A., Bleuler, H., Bouri, M., Lambercy, O., del Millán, J.R., Riener, R., Vallery, H., Gassert, R.: Control strategies for active lower extremity prosthetics and orthotics: a review. J. Neuroeng. Rehabil. 12(1), 1 (2015)

    Article  Google Scholar 

  3. Zelik, K.E., Honert, E.C.: Ankle and foot power in gait analysis: Implications for science, technology and clinical assessment. J. Biomech. 75, 1–12 (2018)

    Article  Google Scholar 

  4. Au, S.K., Dilworth, P., Herr, H.: An ankle-foot emulation system for the study of human walking biomechanics. In: Proceedings 2006 IEEE International Conference on 2006 Robotics and Automation, 2006. ICRA 2006, pp. 2939–2945. New York, IEEE (2006)

  5. Au, S.K.-W.: Powered Ankle–Foot Prosthesis for the Improvement of Amputee Walking Economy. Massachusetts Institute of Technology, Cambridge (2007)

    Google Scholar 

  6. Jones, K.E., de Hamilton, A.F.C., Wolpert, D.M.: Sources of signal-dependent noise during isometric force production. J. Neurophysiol. 88(3), 1533–1544 (2002)

    Article  Google Scholar 

  7. Van Beers, R.J., Haggard, P., Wolpert, D.M.: The role of execution noise in movement variability. J. Neurophysiol. 91(2), 1050–1063 (2004)

    Article  Google Scholar 

  8. Churchland, M.M., Afshar, A., Shenoy, K.V.: A central source of movement variability. Neuron 52(6), 1085–1096 (2006)

    Article  Google Scholar 

  9. Jimenez-Fabian, R., Verlinden, O.: Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Med. Eng. Phys. 34(4), 397–408 (2012)

    Article  Google Scholar 

  10. Au, S.K., Herr, H., Weber, J., Martinez-Villalpando, E.C.: Powered ankle-foot prosthesis for the improvement of amputee ambulation. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2007, pp. 3020-3026. New York, IEEE (2007)

  11. Eilenberg, M.F., Geyer, H., Herr, H.: Control of a powered ankle–foot prosthesis based on a neuromuscular model. IEEE Trans. Neural Syst. Rehabil. Eng. 18(2), 164–173 (2010)

    Article  Google Scholar 

  12. Shultz, A.H., Lawson, B.E., Goldfarb, M.: Walking on uneven terrain with a powered ankle prosthesis: a preliminary assessment. In: 2015 37th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC) of the IEEE, IEEE, New York, pp. 5299–5302 (2015)

  13. Shultz, A., Lawson, B., Goldfarb, M.: Variable cadence walking and ground adaptive standing with a powered ankle prosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 495–505 (2015)

    Article  Google Scholar 

  14. Wang, J., Kannape, O.A., Herr, H.M.: Proportional EMG control of ankle plantar flexion in a powered transtibial prosthesis. In: 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR) 2013, pp. 1–5. IEEE, New York, (2013)

  15. Kannape, O.A., Herr, H.M.: Split-belt adaptation and gait symmetry in transtibial amputees walking with a hybrid EMG controlled ankle-foot prosthesis. In: 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), 2016, pp. 5469–5472, IEEE, New York (2016)

  16. Chen, B., Wang, Q.: Combining human volitional control with intrinsic controller on robotic prosthesis: a case study on adaptive slope walking. In: 37th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), 2015, pp. 4777–4780, IEEE, New York (2015)

  17. Chen, B., Wang, Q., Wang, L.: Adaptive slope walking with a robotic transtibial prosthesis based on volitional EMG control. IEEE/ASME Trans. Mech. 20(5), 2146–2157 (2015)

    Article  Google Scholar 

  18. Kannape, O.A., Herr, H.M.: Volitional control of ankle plantar flexion in a powered transtibial prosthesis during stair-ambulation. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2014, pp. 1662–1665. IEEE, New York, (2014)

  19. Cao, L., Wang, Y., Hao, D., Rong, Y., Yang, L., Zhang, S., Zheng, D.: Effects of force load, muscle fatigue, and magnetic stimulation on surface electromyography during side arm lateral raise task: a preliminary study with healthy subjects. BioMed Res. Int. 2017 (2017)

    Google Scholar 

  20. Gregg, R.D., Lenzi, T., Hargrove, L.J., Sensinger, J.W.: Virtual constraint control of a powered prosthetic leg: from simulation to experiments with transfemoral amputees. IEEE Trans. Robot. 30(6), 1455–1471 (2014)

    Article  Google Scholar 

  21. Ahn, J., Hogan, N.: Walking is not like reaching: evidence from periodic mechanical perturbations. PLoS ONE 7(3), e31767 (2012)

    Article  Google Scholar 

  22. Holgate, M.A., Bohler, A.W., Suga, T.G.: Control algorithms for ankle robots: a reflection on the state-of-the-art and presentation of two novel algorithms. In: 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics 2008, pp. 97–102, IEEE, New York, (2008)

  23. Holgate, M.A., Sugar, T.G., Böhler, A.W.: A novel control algorithm for wearable robotics using phase plane invariants. In: IEEE International Conference on Robotics and Automation, 2009. ICRA’09. 2009, pp. 3845–3850, IEEE, New York (2009)

  24. Mai, A., Commuri, S.: Intelligent control of a prosthetic ankle joint using gait recognition. Control Eng. Pract. 49, 1–13 (2016)

    Article  Google Scholar 

  25. Zhao, H., Horn, J., Reher, J., Paredes, V., Ames, A.D.: First steps toward translating robotic walking to prostheses: a nonlinear optimization based control approach. Auton. Robots 41(3), 725–742 (2017)

    Article  Google Scholar 

  26. Zhao, H., Horn, J., Reher, J., Paredes, V., Ames, A.D.: Multicontact locomotion on transfemoral prostheses via hybrid system models and optimization-based control. IEEE Trans. Autom. Sci. Eng. 13(2), 502–513 (2016)

    Article  Google Scholar 

  27. Ahn, J., Hogan, N.: Is estimation of Floquet multipliers of human walking valid? In: Bioengineering Conference (NEBEC), 2014 40th Annual Northeast 2014, pp. 1–2. IEEE, New York, (2014)

  28. Ahn, J., Hogan, N.: Improved assessment of orbital stability of rhythmic motion with noise. PLoS ONE 10(3), e0119596 (2015)

    Article  Google Scholar 

  29. Quintero, D., Martin, A.E., Gregg, R.D.: Toward unified control of a powered prosthetic leg: a simulation study. IEEE Trans. Control Syst. Technol. 26, 305–315 (2017)

    Article  Google Scholar 

  30. Quintero, D., Villarreal, D.J., Gregg, R.D.: Preliminary experiments with a unified controller for a powered knee-ankle prosthetic leg across walking speeds. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2016, pp. 5427–5433. IEEE, New York (2016)

  31. Martin, A.E., Gregg, R.D.: Stable, robust hybrid zero dynamics control of powered lower-limb prostheses. IEEE Trans. Autom. Control 62, 3930–3942 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Westervelt, E.R., Grizzle, J.W., Koditschek, D.E.: Hybrid zero dynamics of planar biped walkers. IEEE Trans. Autom. Control 48(1), 42–56 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jiang, Y., Yang, C., Ma, H.: A review of fuzzy logic and neural network based intelligent control design for discrete-time systems. Discrete Dyn. Nat. Soc. 2016 (2016)

  34. Gardinier, E.S., Kelly, B.M., Wensman, J., Gates, D.H.: A controlled clinical trial of a clinically-tuned powered ankle prosthesis in people with transtibial amputation. Clin. Rehabil. 32(3), 319–329 (2018)

    Article  Google Scholar 

  35. Simon, A.M., Ingraham, K.A., Fey, N.P., Finucane, S.B., Lipschutz, R.D., Young, A.J., Hargrove, L.J.: Configuring a powered knee and ankle prosthesis for transfemoral amputees within five specific ambulation modes. PLoS ONE 9(6), e99387 (2014)

    Article  Google Scholar 

  36. Liu, M., Lupiani, A., Lee, I.-C., Huang, H.H.: Identify kinematic features for powered prosthesis tuning. In: 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR) 2019, pp. 565–569, IEEE, New York, (2019)

  37. Fernández, A., García, S., Luengo, J., Bernadó-Mansilla, E., Herrera, F.: Genetics-based machine learning for rule induction: state of the art, taxonomy, and comparative study. IEEE Trans. Evol. Comput. 14(6), 913–941 (2010)

    Article  Google Scholar 

  38. Prado, R., Exposito, J.M., Yuste, A.: Knowledge acquisition in fuzzy-rule-based systems with particle-swarm optimization. IEEE Trans. Fuzzy Syst. 18(6), 1083–1097 (2010)

    Article  Google Scholar 

  39. Cordón, O., Herrera, F., Gomide, F., Hoffmann, F., Magdalena, L.: Ten years of genetic fuzzy systems: current framework and new trends. In: Proceedings joint 9th IFSA world congress and 20th NAFIPS international conference (Cat. No. 01TH8569) 2001, pp. 1241–1246, IEEE, New York (2001)

  40. Ishibuchi, H.: Multiobjective genetic fuzzy systems: review and future research directions. In: 2007 IEEE International Fuzzy Systems Conference 2007, pp. 1–6, IEEE, New York (2007)

  41. Pano, V., Ouyang, P.R.: Comparative study of ga, pso, and de for tuning position domain pid controller. In: 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014) 2014, pp. 1254–1259, IEEE, New York (2014)

  42. Cordón, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets Syst. 141(1), 5–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sugeno, M., Kang, G.: Structure identification of fuzzy model. Fuzzy Sets Syst. 28(1), 15–33 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hogan, N., Buerger, S.P.: Impedance and interaction control. In: Kurfess, T.R. (ed.) Robotics and Automation Handbook, pp. 375–398. CRC Press, Boca Raton (2004)

    Google Scholar 

  45. Hogan, N.: Impedance Control: An Approach to Manipulation: Part I—Theory. (1985)

    Article  MATH  Google Scholar 

  46. Brockett, C.L., Chapman, G.J.: Biomechanics of the ankle. Orthop. Trauma 30(3), 232–238 (2016)

    Article  Google Scholar 

  47. Al Kouzbary, M., Abu Osman, N.A., Abdul Wahab, A.K.: Sensorless control system for assistive robotic ankle–foot. Int. J. Adv. Robot. Syst. 15(3), 1729881418775854 (2018)

    Article  Google Scholar 

  48. Herrera, F.: Genetic fuzzy systems: taxonomy, current research trends and prospects. Evol. Intell. 1(1), 27–46 (2008)

    Article  Google Scholar 

  49. Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W.: Type-2 fuzzy logic: theory and applications. In: 2007 IEEE International Conference on Granular Computing (GRC 2007) 2007, pp. 145–145, IEEE, New York (2007)

  50. Castillo, O., Amador-Angulo, L., Castro, J.R., Garcia-Valdez, M.: A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Inf. Sci. 354, 257–274 (2016)

    Article  Google Scholar 

  51. Mo, H., Wang, F.-Y., Zhou, M., Li, R., Xiao, Z.: Footprint of uncertainty for type-2 fuzzy sets. Inf. Sci. 272, 96–110 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Sanz, J., Fernández, A., Bustince, H., Herrera, F.: A genetic tuning to improve the performance of fuzzy rule-based classification systems with interval-valued fuzzy sets: degree of ignorance and lateral position. Int. J. Approx. Reason. 52(6), 751–766 (2011)

    Article  Google Scholar 

Download references

Funding

This study was funded by Ministry of Higher Education, University of Malaya (FG004-17AFR), Platcom HIP-2 (AIM/PlaTCOM/HIP2/CCGF/2017/168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor Azuan Abu Osman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Kouzbary, M., Abu Osman, N.A., Al Kouzbary, H. et al. Towards Universal Control System for Powered Ankle–Foot Prosthesis: A Simulation Study. Int. J. Fuzzy Syst. 22, 1299–1313 (2020). https://doi.org/10.1007/s40815-020-00855-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00855-4

Keywords

Navigation