Skip to main content
Log in

Robust Adaptive Fault Reconfiguration for Micro-gas Turbine Based on Optimized T–S Fuzzy Model and Nonsingular TSMO

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper presents a novel robust fault reconfiguration scheme based on optimized Takagi–Sugeno (T–S) fuzzy model and nonsingular terminal sliding mode observer (NTSMO) with adaptive law for micro-gas turbine (MGS). An optimized T–S fuzzy model is introduced because it can approximate any nonlinear model with arbitrary precision, and an improved imperial competition algorithm (ICA) using adaptive reform probability is proposed to improve the accuracy of the model. A linear transformation method is introduced to decouple the fault and disturbance of the system. The nonsingular terminal sliding mode observer is designed to reconstruct actuator fault and disturbance with unknown upper bound of a change rate, in which an adaptive law is introduced to update the sliding mode gain in real-time to eliminate the influence of fault, disturbance and modeling uncertainty. Simulations in Matlab/Simulink show high reconfiguration accuracy and high-speed of the proposed method despite of the presence of fault, disturbance and modeling uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Benato, A., Stoppato, A., Mirandola, A., Del Medico, M.: Design and off-design analysis of an ORC coupled with a micro-gas turbine. Energy Proced 129, 551–558 (2017). https://doi.org/10.1016/j.egypro.2017.09.192

    Article  Google Scholar 

  2. Talluri, L., Fiaschi, D., Neri, G., Ciappi, L.: Design and optimization of a Tesla turbine for ORC applications. Appl. Energy 226, 300–319 (2018). https://doi.org/10.1016/j.apenergy.2018.05.057

    Article  Google Scholar 

  3. Kalantar, M., Mousavi, G.: Dynamic behavior of a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage. Appl. Energy 87(10), 3051–3064 (2010). https://doi.org/10.1016/j.apenergy.2010.02.019

    Article  Google Scholar 

  4. Rodriguez-Martinez, A., Garduno-Ramirez, R., Vela-Valdes, L.G.: PI fuzzy gain-scheduling speed control at startup of a gas-turbine power plant. IEEE Trans. Energy Convers. 26(1), 310–317 (2011). https://doi.org/10.1109/tec.2010.2081991

    Article  Google Scholar 

  5. Nikpey, H., Assadi, M., Breuhaus, P., Mørkved, P.T.: Experimental evaluation and ANN modeling of a recuperative micro gas turbine burning mixtures of natural gas and biogas. Appl. Energy 117, 30–41 (2014). https://doi.org/10.1016/j.apenergy.2013.11.074

    Article  Google Scholar 

  6. Mazzoletti, M.A., Bossio, G.R., De Angelo, C.H., Espinoza-Trejo, D.R.: A model-based strategy for interturn short-circuit fault diagnosis in PMSM. IEEE Trans. Industr. Electron. 64(9), 7218–7228 (2017). https://doi.org/10.1109/tie.2017.2688973

    Article  Google Scholar 

  7. He, M., He, D.: Deep learning based approach for bearing fault diagnosis. IEEE Trans. Ind. Appl. 53(3), 3057–3065 (2017). https://doi.org/10.1109/tia.2017.2661250

    Article  Google Scholar 

  8. Frank, P.M.: Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: a survey and some new results. Automatica. 26(3), 459–474 (1990). https://doi.org/10.1016/0005-1098(90)90018-d

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhao, Z., Yang, Y., Ding, S.X., Li, L.: Fault-tolerant control for systems with model uncertainty and multiplicative faults. IEEE Trans. Syst. Man Cybern. 50(2), 514–524 (2020). https://doi.org/10.1109/tsmc.2017.2759144

    Article  Google Scholar 

  10. Chen, W., Chen, W.-T., Saif, M., Li, M.-F., Wu, H.: Simultaneous fault isolation and estimation of lithium-ion batteries via synthesized design of Luenberger and Learning Observers. IEEE Trans. Control Syst. Technol. 22(1), 290–298 (2014). https://doi.org/10.1109/tcst.2013.2239296

    Article  Google Scholar 

  11. Salehi, R., Vossoughi, G., Alasty, A.: A second-order sliding mode observer for fault detection and isolation of turbocharged SI engines. IEEE Trans. Industr. Electron. 62(12), 7795–7803 (2015). https://doi.org/10.1109/tie.2015.2448693

    Article  Google Scholar 

  12. Liu, Z., He, H.: Sensor fault detection and isolation for a lithium-ion battery pack in electric vehicles using adaptive extended Kalman filter. Appl. Energy 185, 2033–2044 (2017). https://doi.org/10.1016/j.apenergy.2015.10.168

    Article  Google Scholar 

  13. Mohammadi, A., Tavakoli, M., Marquez, H.J., Hashemzadeh, F.: Nonlinear disturbance observer design for robotic manipulators. Control Eng. Pract. 21(3), 253–267 (2013). https://doi.org/10.1016/j.conengprac.2012.10.008

    Article  Google Scholar 

  14. Ginoya, D., Shendge, P.D., Phadke, S.B.: Sliding mode control for mismatched uncertain systems using an extended disturbance observer. IEEE Trans. Industr. Electron. 61(4), 1983–1992 (2014). https://doi.org/10.1109/tie.2013.2271597

    Article  Google Scholar 

  15. Boskovic, J.D., Bergstrom, S.E., Mehra, R.K.: Robust integrated flight control design under failures, damage, and state-dependent disturbances. J. Guid. Contr. Dyn. 28(5), 902–917 (2005). https://doi.org/10.2514/1.11272

    Article  Google Scholar 

  16. Alwi, H., Edwards, C., Marcos, A.: Fault reconstruction using a LPV sliding mode observer for a class of LPV systems. J. Franklin Inst. 349(2), 510–530 (2012). https://doi.org/10.1016/j.jfranklin.2011.06.026

    Article  MathSciNet  MATH  Google Scholar 

  17. Kumar, S.R., Rao, S., Ghose, D.: Nonsingular terminal sliding mode guidance with impact angle constraints. J Guid Cont. Dyn. 37(4), 1114–1130 (2014). https://doi.org/10.2514/1.62737

    Article  Google Scholar 

  18. Wang, J., Yang, J., Wu, B., Li, S., Li, Q.: Extended state observer-based sliding mode control for PWM-based DC–DC buck power converter systems with mismatched disturbances. IET Control Theory Appl. 9(4), 579–586 (2015). https://doi.org/10.1049/iet-cta.2014.0220

    Article  MathSciNet  Google Scholar 

  19. Cui, R., Chen, L., Yang, C., Chen, M.: Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities. IEEE Trans. Industr. Electron. 64(8), 6785–6795 (2017). https://doi.org/10.1109/tie.2017.2694410

    Article  Google Scholar 

  20. Zheng, J., Wang, H., Man, Z., Jin, J., Fu, M.: Robust motion control of a linear motor positioner using fast nonsingular terminal sliding mode. IEEE/ASME Trans. Mechatron. 20(4), 1743–1752 (2015). https://doi.org/10.1109/tmech.2014.2352647

    Article  Google Scholar 

  21. K, S., Jianbin, Q., Karimi, H.R., Fu, Y.: Event-Triggered Robust Fuzzy Adaptive Finite-Time Control of Nonlinear Systems with Prescribed Performance. IEEE Transactions on Fuzzy Systems, 1-1 (2020). https://doi.org/10.1109/tfuzz.2020.2979129

  22. Lan, J., Patton, R.J.: Integrated design of fault-tolerant control for nonlinear systems based on fault estimation and T–S Fuzzy Modeling. IEEE Trans. Fuzzy Syst. 25(5), 1141–1154 (2017). https://doi.org/10.1109/TFUZZ.2016.2598849

    Article  Google Scholar 

  23. Pechloff, A.N., Laschka, B.: Small disturbance Navier–Stokes method: efficient tool for predicting unsteady air loads. Journal of Aircraft 43(1), 17–29 (2006). https://doi.org/10.2514/1.14350

    Article  Google Scholar 

  24. Sirca, G.F., Adeli, H.: System identification in structural engineering. Scientia Iranica 19(6), 1355–1364 (2012). https://doi.org/10.1016/j.scient.2012.09.002

    Article  Google Scholar 

  25. Gou, X.Z., Zhou, W.X., Huang, J.Q.: Component-level modeling technology for variable cycle engine. J. Aerosp. Power 28(1), 104–111 (2013)

    Google Scholar 

  26. Meda-Campana, J.A., Grande-Meza, A., de Jesus Rubio, J., Tapia-Herrera, R., Hernandez-Cortes, T., Curtidor-Lopez, A.V., Paramo-Carranza, L.A., Cazares-Ramirez, I.O.: Design of stabilizers and observers for a class of multivariable T–S fuzzy models on the basis of new interpolation functions. IEEE Trans. Fuzzy Syst. 26(5), 2649–2662 (2018). https://doi.org/10.1109/tfuzz.2017.2786244

    Article  Google Scholar 

  27. Zhu, X., Pedrycz, W., Li, Z.: A design of granular Takagi-Sugeno fuzzy model through the synergy of fuzzy subspace clustering and optimal allocation of information granularity. IEEE Trans. Fuzzy Syst. 26(5), 2499–2509 (2018). https://doi.org/10.1109/tfuzz.2018.2813314

    Article  Google Scholar 

  28. Li, L., Chadli, M., Ding, S.X., Qiu, J., Yang, Y.: Diagnostic observer design for T–S fuzzy systems: application to real-time-weighted fault-detection approach. IEEE Trans. Fuzzy Syst. 26(2), 805–816 (2018). https://doi.org/10.1109/tfuzz.2017.2690627

    Article  Google Scholar 

  29. Gharavi, H., Ardehali, M.M., Ghanbari-Tichi, S.: Imperial competitive algorithm optimization of fuzzy multi-objective design of a hybrid green power system with considerations for economics, reliability, and environmental emissions. Renew. Energy 78, 427–437 (2015). https://doi.org/10.1016/j.renene.2015.01.029

    Article  Google Scholar 

  30. Chen, M.-H., Chen, S.-H., Chang, P.-C.: Imperial competitive algorithm with policy learning for the traveling salesman problem. Soft. Comput. 21(7), 1863–1875 (2015). https://doi.org/10.1007/s00500-015-1886-z

    Article  Google Scholar 

  31. Bayareh, M., Mohammadi, M.: Multi-objective optimization of a triple shaft gas compressor station using Imperialist Competitive Algorithm. Appl. Therm. Eng. 109, 384–400 (2016). https://doi.org/10.1016/j.applthermaleng.2016.08.089

    Article  Google Scholar 

  32. Razmjooy, N., Ramezani, M., Ghadimi, N.: Imperialist competitive algorithm-based optimization of neuro-fuzzy system parameters for automatic red-eye removal. Int. J. Fuzzy Syst. 19(4), 1144–1156 (2017). https://doi.org/10.1007/s40815-017-0305-2

    Article  Google Scholar 

  33. Sun, S., Wei, X., Zhang, H., Karimi, H.R., Han, J.: Composite fault-tolerant control with disturbance observer for stochastic systems with multiple disturbances. J. Franklin Inst. 355(12), 4897–4915 (2018). https://doi.org/10.1016/j.jfranklin.2018.05.016

    Article  MathSciNet  MATH  Google Scholar 

  34. Han X, Fridman E, Spurgeon SK. Sliding mode observer for robust fault reconstruction of time delay systems. 2016. 10.1007/978-3-319-18072-4_9.

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China [Grant Number: 51876089], and the Fundamental Research Funds for the Central Universities [Grant Number: kfjj20190205].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingfei Xiao.

Appendices

Appendices

1.1 Appendix A

See Table 3.

Table 3 Main parameters of MGS

1.2 Appendix B

See Table 4.

Table 4 Optimization algorithm parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Xiao, L., Meng, Z. et al. Robust Adaptive Fault Reconfiguration for Micro-gas Turbine Based on Optimized T–S Fuzzy Model and Nonsingular TSMO. Int. J. Fuzzy Syst. 22, 2204–2222 (2020). https://doi.org/10.1007/s40815-020-00917-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00917-7

Keywords

Navigation