Skip to main content
Log in

Adaptive Fuzzy Dynamic Surface Control for Nonlinear Systems with Time-Varying Input Delay and Sampled Data

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper studies fuzzy adaptive dynamic surface control strategy for nonlinear system with sampled data and time-varying input delay. By utilizing the approximated property of fuzzy logic systems (FLSs), a fuzzy estimator (FE) model is designed to identify the states of the original system, which is mainly used to provide information of estimation states to replace the sampled data of the nonlinear controlled system. In the proposed strategy, with the help of sampled-data activity, an integral term is designed to compensate the problem of time-varying input delay. Moreover, by invoking the dynamic surface control (DSC) technique, the problem of ‘explosion of complexity’ has been overcame. And the developed control strategy demonstrates that all signals of the controlled system are semi-globally uniformly ultimately bounded (SGUUB). Ultimately, two numerical simulation examples are given to prove the feasibility of the developed control method and theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang, T., Zhang, Y.F., Qiu, J.B., et al.: Adaptive fuzzy backstepping control for a class of nonlinear systems with sampled and delayed measurements. IEEE Trans. Fuzzy Syst. 23(2), 302–312 (2015)

    Article  Google Scholar 

  2. Wang, L.X.: Adaptive fuzzy systems and control: design and stability analysis. Prentice-Hall, Englewood Cliffs (1994)

    Google Scholar 

  3. Su, X.H., Liu, Z., Lai, G.Y., et al.: Event-triggered adaptive fuzzy control for uncertain strict-feedback nonlinear systems with guaranteed transient performance. IEEE Trans. Fuzzy Syst. 27(12), 2327–2337 (2019)

    Article  Google Scholar 

  4. Peng, Z.H., Wang, J., Wang, D.: Distributed containment maneuvering of multiple marine vessels via neurodynamics-based output feedback. IEEE Trans. Industr. Electron. 64(5), 3831–3839 (2017)

    Article  Google Scholar 

  5. Wang, H.Q., Bai, W., Liu, P.X.P.: Finite-time adaptive fault-tolerant control for nonlinear systems with multiple faults. IEEE/CAA J Automatica Sinica 6(6), 1417–1427 (2019)

    Article  MathSciNet  Google Scholar 

  6. Li, Y.M., Min, X., Tong, S.C.: Adaptive fuzzy inverse optimal control for uncertain strict-feedback nonlinear systems. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/tfuzz.2019.2935693

    Article  Google Scholar 

  7. Tong, S.C., Li, Y.M.: Robust adaptive fuzzy backstepping output feedback tracking control for nonlinear system with dynamic uncertainties. Sci China Inf Sci 53(2), 307–324 (2010)

    Article  MathSciNet  Google Scholar 

  8. Tong, S.C., Li, Y.M.: Observer-based adaptive fuzzy backstepping control of uncertain nonlinear pure-feedback systems. Sci China Inf Sci 57(1), 1–14 (2014)

    Article  MathSciNet  Google Scholar 

  9. Chen, B., Liu, X.P., Tong, S.C., et al.: Observer and adaptive fuzzy control design for nonlinear strict-feedback systems with unknown virtual control coefficients. IEEE Trans. Fuzzy Syst. 26(3), 1732–1743 (2018)

    Article  Google Scholar 

  10. Wang, H.Q., Liu, S.W., Yang, X.B.: Adaptive neural control for non-strict-feedback nonlinear systems with input delay. Inf. Sci. 514(1), 605–616 (2020)

    Article  MathSciNet  Google Scholar 

  11. Tong, S.C., Min, X., Li, Y.X.: Observer-based adaptive fuzzy tracking control for strict-feedback nonlinear systems with unknown control gain functions. IEEE Trans. Cybern. (2019). https://doi.org/10.1109/tcyb.2020.2977175

    Article  Google Scholar 

  12. Wang, F., Liu, Z., Zhang, Y., et al.: Adaptive fuzzy dynamic surface control for a class of nonlinear systems with fuzzy dead zone and dynamic uncertainties. Nonlinear Dyn. 73(3), 1693–1709 (2014)

    Article  Google Scholar 

  13. Peng, Z.H., Wang, D., Wang, J.: Predictor-based neural dynamic surface control for uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. Learn. Syst. 28(9), 2156–2167 (2017)

    MathSciNet  Google Scholar 

  14. Wang, D., Huang, J.: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Netw. 16(1), 195–202 (2005)

    Article  Google Scholar 

  15. Wang, M., Liu, X.P., Shi, P.: Adaptive neural control of pure-feedback nonlinear time-delay systems via dynamic surface technique. IEEE Trans. Syst. Man Cybern. Part B. 41(6), 1681–1692 (2011)

    Article  Google Scholar 

  16. Yin, S., Shi, P., Yang, H.Y.: Adaptive fuzzy control of strict-feedback nonlinear time-delay systems with unmodeled dynamics. IEEE Trans. Cybern. 46(8), 1926–1938 (2016)

    Article  Google Scholar 

  17. Na, J., Huang, Y.B., Wu, X., et al.: Adaptive finite-time fuzzy control of nonlinear active suspension systems with input delay. IEEE Trans. Cybern. 50(6), 2639–2650 (2019)

    Article  Google Scholar 

  18. Li, H.Y., Wang, L.J., Du, H.P., et al.: Adaptive fuzzy backstepping tracking control for strict-feedback systems with input delay. IEEE Trans. Fuzzy Syst. 25(3), 642–652 (2017)

    Article  Google Scholar 

  19. Niu, B., Li, L.: Adaptive backstepping-based neural tracking control for MIMO nonlinear switched systems subject to input delays. IEEE Trans. Neural Netw. Learn. Syst. 29(6), 2638–3644 (2018)

    Article  MathSciNet  Google Scholar 

  20. Yoo, S.J., Park, J.B., Choi, Y.H.: Adaptive dynamic surface control for stabilization of parametric strict-feedback nonlinear systems with unknown time delays. IEEE Trans. Autom. Control 52(12), 2360–2365 (2007)

    Article  MathSciNet  Google Scholar 

  21. Zhou, Q., Wu, C.W., Jing, X.J., et al.: Adaptive fuzzy backstepping dynamic surface control for nonlinear input-delay systems. Neurocomputing 199, 58–65 (2016)

    Article  Google Scholar 

  22. Yu, K.T., Li, Y.M.: Adaptive fuzzy control for nonlinear systems with sampled data and time-varying input delay. AIMS Math 5, 2307–2325 (2020)

    Article  MathSciNet  Google Scholar 

  23. Du, H.B., Qian, C.J., Li, S.H.: Global stabilization of a class of uncertain upper-triangular system under sampled-data control. Int. J. Robust Nonlinear Control 23(6), 620–637 (2013)

    Article  MathSciNet  Google Scholar 

  24. Zhang, D.Y., Shen, Y.J.: Global output feedback sampled-data stabilization for upper-triangular nonlinear system with improved maximum allowable transmission delay. Int. J. Robust Nonlinear Control 27(2), 212–235 (2017)

    Article  MathSciNet  Google Scholar 

  25. Sun, W., Su, S., Xia, J., Zhuang, G.: Command filter-based adaptive prescribed performance tracking control for Stochastic uncertain nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/tsmc.2019.2963220

    Article  Google Scholar 

  26. Sun, W., Su, S., Wu, Y., Xia, J.: A novel adaptive Fuzzy control for output constrained Stochastic non-strict feedback nonlinear systems. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/tfuzz.2020.2969909

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation (NNSF) of China under Grant 61822307 and Grant 61773188.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KunTing Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Yu, K. Adaptive Fuzzy Dynamic Surface Control for Nonlinear Systems with Time-Varying Input Delay and Sampled Data. Int. J. Fuzzy Syst. 22, 2236–2245 (2020). https://doi.org/10.1007/s40815-020-00927-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00927-5

Keywords

Navigation