Skip to main content

Advertisement

Log in

Closed Forms of the Interval Type 2 Fuzzy Sets Additions Based on Archimedean T-norms with Application in Decision Making Aggregation

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Fuzzy addition is one of the operations widely used in the application of fuzzy systems. The analytical and closed form expressions of the fuzzy additions of the generalized fuzzy numbers and the interval type 2 fuzzy numbers (IT2FS) are developed. The generalized fuzzy numbers is a non-flat and subnormal fuzzy number with different left and right shape functions. Classical fuzzy operations based on the minimum t-norm could lead to uncontrollable fuzziness. Fuzzy addition based on generalized t-norm can better control ambiguity. In order to control the ambiguity of fuzzy addition, this paper is to develop a general type 1 fuzzy set and interval type 2 fuzzy set (IT2FS) additions based on t-norm. The closed forms of the generalized IT2FS additions based on some popular t-norms are formulated. The specific analytical and closed form expressions based on Archimedean t-norms: e.g. drastic, Łukasiewicz, product and the families of Schweizer-Sklar and Yager t-norms are derived. The IT2FS are widely used to characterize the natural words, e.g. the decision making linguistic judgments, the fuzzy real time control systems with linguistic rules. Furthermore, based on the analytical T1FS additions results, the application to the linguistic multiple criteria decision making aggregation of the IT2FS additions based on t-norms is introduced. A comparative MCDM numerical example is demonstrated for the verification of the developed closed form expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Aguero, J.R., Vargas, A.: Calculating functions of interval type-2 fuzzy numbers for fault current analysis. IEEE Trans. Fuzzy Syst. 15(1), 31–40 (2007)

    Google Scholar 

  2. Calvo, T., Mayor, G., Mesiar, R.: Aggregation operators: new trends and applications. Physica 97, 22 (2012)

    MATH  Google Scholar 

  3. Cervantes, L., Castillo, O.: Type-2 fuzzy logic aggregation of multiple fuzzy controllers for airplane flight control. Inf. Sci. 324, 247–256 (2015). https://doi.org/10.1016/j.ins.2015.06.047

    Article  Google Scholar 

  4. Chen, S.J., Chen, S.M.: Fuzzy risk analysis based on similarity measures of generalized fuzzy numbers. IEEE Trans. Fuzzy Syst. 11(1), 45–56 (2003)

    Google Scholar 

  5. Chen, S.M., Wang, C.Y.: Fuzzy decision making systems based on interval type-2 fuzzy sets. Inf. Sci. 242, 1–21 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Chiao, K.P.: Multiple criteria decision making for linguistic judgments with importance quantifier guided ordered weighted averaging operator. Inf. Sci. 474, 48–74 (2019). https://doi.org/10.1016/j.ins.2018.09.043

    Article  MathSciNet  MATH  Google Scholar 

  7. Choi, B.I., Rhee, C.H.: Interval type-2 fuzzy membership function generation methods for pattern recognition. Inf. Sci. 179(13), 2102–2122 (2009). https://doi.org/10.1016/j.ins.2008.04.009. special Section on High Order Fuzzy Sets

    Article  MATH  Google Scholar 

  8. Dubois, D., Prade, H.: Operations on fuzzy numbers. Int. J. Syst. Sci. 9(6), 613–626 (1978). https://doi.org/10.1080/00207727808941724

    Article  MathSciNet  MATH  Google Scholar 

  9. Dubois, D., Prade, H., Zadeh, L.A.: Fundamentals of fuzzy sets. The handbooks of fuzzy sets series. Kluwer Academic Publ. cop., Boston (2000)

    Google Scholar 

  10. Fullér, R., Keresztfalvi, T.: On generalization of Nguyen’s theorem. Fuzzy Sets Syst. 41(3), 371–374 (1991)

    MathSciNet  MATH  Google Scholar 

  11. Gonzalez, C.I., Melin, P., Castro, J.R., Castillo, O., Mendoza, O.: Optimization of interval type-2 fuzzy systems for image edge detection. Appl. Soft Comput. 47, 631–643 (2016)

    Google Scholar 

  12. Hosseini-Pozveh, M.S., Safayani, M., Mirzaei, A.: Interval type-2 fuzzy restricted boltzmann machine. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2969120

    Article  Google Scholar 

  13. Huang, H.Z., Tong, X., Zuo, M.J.: Posbist fault tree analysis of coherent systems. Reliab. Eng. Syst. Saf. 84(2), 141–148 (2004). https://doi.org/10.1016/j.ress.2003.11.002

    Article  Google Scholar 

  14. John, R., Hagras, H., Castillo, O.: Type-2 Fuzzy Logic and Systems. Studies in Fuzziness and Soft Computing. Springer International Publishing, Berlin (2018)

    Google Scholar 

  15. Karnik, N., Mendel, J.: Operations on type-2 fuzzy sets. Fuzzy Sets Syst. 122(2), 327–348 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, 1st edn. Springer, Berlin (2000)

    MATH  Google Scholar 

  17. Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Position paper II: general constructions and parameterized families. Fuzzy Sets Syst. 3, 411–438 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Kumar, M.: Applying weakest t-norm based approximate intuitionistic fuzzy arithmetic operations on different types of intuitionistic fuzzy numbers to evaluate reliability of pcba fault. Appl. Soft Comput. 23, 387–406 (2014). https://doi.org/10.1016/j.asoc.2014.06.036

    Article  Google Scholar 

  19. Li, X., Ye, D.: Asynchronous event-triggered control for networked interval type-2 fuzzy systems against dos attacks. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2975495

    Article  Google Scholar 

  20. Mendel, J.: Computing with Words: Zadeh, Turing, Popper and Occam. Comput. Intell. Magazine 2(4), 10–17 (2007a)

    Google Scholar 

  21. Mendel, J.: Type-2 fuzzy sets and systems: an overview. Comput. Intell. Magazine 2(1), 20–29 (2007). https://doi.org/10.1109/MCI.2007.380672

    Article  Google Scholar 

  22. Mendel, J.M.: Computing with words and its relationships with fuzzistics. Inf. Sci. 177(4), 988–1006 (2007c)

    MathSciNet  Google Scholar 

  23. Mendel, J.M., Rajati, M.R.: On computing normalized interval type-2 fuzzy sets. IEEE Trans. Fuzzy Syst. 22(5), 1335–1340 (2014)

    Google Scholar 

  24. Menger, K.: Statistical metrics. Proc. Natl. Acad. Sci. 28(12), 535–537 (1942)

    MathSciNet  MATH  Google Scholar 

  25. Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10(3), 313–334 (1960)

    MathSciNet  MATH  Google Scholar 

  26. Starczewski, J.T.: Extended triangular norms. Inf. Sci. 179(6), 742–757 (2009). https://doi.org/10.1016/j.ins.2008.11.009

    Article  MathSciNet  MATH  Google Scholar 

  27. Tolga, A.C.: Real options valuation of an iot based healthcare device with interval type-2 fuzzy numbers. Socio-Econ. Plan. Sci. 69, 100693 (2020). https://doi.org/10.1016/j.seps.2019.02.008

    Article  Google Scholar 

  28. Walker, C.L., Walker, E.A.: The algebra of fuzzy truth values. Fuzzy Sets Syst. 149(2), 309–347 (2005). https://doi.org/10.1016/j.fss.2003.12.003

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, H., Pan, X., Yan, J., Yao, J., He, S.: A projection-based regret theory method for multi-attribute decision making under interval type-2 fuzzy sets environment. Inf. Sci. 512, 108–122 (2020)

    MathSciNet  Google Scholar 

  30. Wang, W., Liu, X., Qin, Y.: Multi-attribute group decision making models under interval type-2 fuzzy environment. Knowl.-Based Syst. 30, 121–128 (2012)

    Google Scholar 

  31. Xiao, B., Lam, H.K., Yu, Y., Li, Y.: Sampled-data output-feedback tracking control for interval type-2 polynomial fuzzy systems. IEEE Trans. Fuzzy Syst. 2, 987 (2019)

    Google Scholar 

  32. Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning I. Inf. Sci. 8(3), 199–251 (1975)

    MathSciNet  MATH  Google Scholar 

  33. Zadeh, L.: From computing with numbers to computing with words-from manipulation of measurements to manipulation of perceptions, pp. 507–544. Springer, Berlin (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Ping Chiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiao, KP. Closed Forms of the Interval Type 2 Fuzzy Sets Additions Based on Archimedean T-norms with Application in Decision Making Aggregation. Int. J. Fuzzy Syst. 22, 2300–2318 (2020). https://doi.org/10.1007/s40815-020-00932-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00932-8

Keywords