Skip to main content
Log in

Further Developments on Application of Dynamic Fuzzy Cognitive Map Concept for Digital Business Models

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Business systems are considered as complex systems and consist of several sub-models such as procurement market, supply process, assembly, distribution and sales market. In these systems, it is important to analyze strength and weakness of each sub-model over other parts in order to obtain information for enhancing the business system performance. To fulfill this aim, in this paper we utilize differential Hebbian learning-based dynamic fuzzy cognitive map techniques to examine the effect of expert’s knowledge as a sort of digital transformation source as well as impact of each sub-model of business system over other sub-models. Finally, the proposed method is illustrated numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Amirkhani, A., Nasiriyan-Rad, H., Papageorgiou, E.I.: A novel fuzzy inference approach: neuro-fuzzy cognitive map. Int. J. Fuzzy Syst. 22, 859–872 (2020). https://doi.org/10.1007/s40815-019-00762-3

    Article  Google Scholar 

  2. Agarwal, R., Gao, G.G., DesRoches, C., Jha, A.K.: The digital transformation of healthcare: current status and the road ahead. Inf. Syst. Res. 21(4), 796–809 (2010)

    Article  Google Scholar 

  3. Bauer, W.: Industry 4.0—Impact and potential of the digital transformation, 2018, ZI. Ziegelindustrie International/Brick and Tile Industry International January(3), 28–33 (2018)

  4. Badatl, M.E.C., Akbykl, R., Papageorgiou, E.I.: A fuzzy cognitive map approach applied in CostBenefit analysis for highway projects. Int. J. Fuzzy Syst. 19, 15121527 (2017). https://doi.org/10.1007/s40815-016-0252-3

    Article  Google Scholar 

  5. Cozmiuc, D., Petrisor, I.: Industrie 4.0 by Siemens: steps made today, 2018. J Cases Inf. Technol. 20(2), 30–48 (2018)

    Article  Google Scholar 

  6. De Cock, M., Bodenhofer, U., Kerre, E.: Modelling linguistic expressions using fuzzy relations. In: Proceedings of the 6th International Conference on Soft Computing. Iizuka, Japan. pp. 353–360 (2000)

  7. Geissdoerfer, M., Savaget, P., Evans: The Cambridge business model innovation process. Procedia Manuf. 8, 262–269 (2017). https://doi.org/10.1016/j.promfg.2017.02.033

    Article  Google Scholar 

  8. Ren, C., He, S., Luan, X., Liu, F., Karimi, H.R.: Finite-Time \(L\)- for continuous-time positive hidden Markov jump systems via TS fuzzy model approach. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.2996743

    Article  Google Scholar 

  9. Guo, K., Chai, R., Candra, H., et al.: A hybrid fuzzy cognitive map/support vector machine approach for EEG-based emotion classification using compressed sensing. Int. J. Fuzzy Syst. 21, 263–273 (2019). https://doi.org/10.1007/s40815-018-0567-3

    Article  Google Scholar 

  10. Hevner, A., vom Brocke, J., Maedche, A.: Roles of digital innovation in design science research. Bus Inf. Syst. Eng. 61(1), 3–8 (2019)

    Article  Google Scholar 

  11. Liu, J., Yin, T., Cao, J., Yue, D., Karimi, H.R.: Security control for TS fuzzy systems with adaptive event-triggered mechanism and multiple cyber-attacks. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2963143

    Article  Google Scholar 

  12. Amer, M., Jetter, A.J.M., Daim, T.: Development of fuzzy cognitive map (FCM)-based scenarios for wind energy. Int. J. Energy Sect. Manage. 5, 564–584 (2011)

    Article  Google Scholar 

  13. Bezdek, J.C.: Fuzzy partitions and relations and axiomatic basis for clustering. Fuzzy Sets Syst. 1(2), 111–127 (1978). https://doi.org/10.1016/0165-0114(78)90012-X

    Article  MathSciNet  MATH  Google Scholar 

  14. Barndorff-Nielsen, O.E., Jensen, J.L., Kendall, W.S.: Networks and Chaos—statistical and probabilistic aspects. Chapman & Hall, London (1993)

    Book  Google Scholar 

  15. Burkhardt, T., Krumeich, J., Werth, D., Loos, P.: Analyzing the business model concept-a comprehensive classification of literature. In: International Conference on Information Systems. International Conference on Information Systems (ICIS-11). December 2–5, 2011, Shanghai China (2011)

  16. Glykas, M. (ed.): Fuzzy cognitive maps. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  17. Kosko, B.: Differential Hebbian learning. AIP Conf. Proc. 151(1), 277–282 (1986)

    Article  Google Scholar 

  18. Kosko, B.: Fuzzy cognitive maps. Int. J. Man-Mach. Stud. 24, 65–75 (1986)

    Article  Google Scholar 

  19. Kotarba, M.: Digital transformation of business models. Found. Manage. 10, 2080–7279 (2018)

    Article  Google Scholar 

  20. Kuzmin, V.B.: Building group decisions in spaces of strict and fuzzy binary relations. Nauka, Moscow (1982). (in Russian)

    Google Scholar 

  21. Makki, B., Xie, W.: Digital transformation effects on manufacturing readiness assessment. Cyber-Phys. Syst. (2019). https://doi.org/10.1080/23335777.2019.1678200

    Article  Google Scholar 

  22. Muhuri, P.K., Shukla, A.K., Abraham, A.: Industry 4.0: a bibliometric analysis and detailed overview. Eng. Appl. Artif. Intell. 78, 218–235 (2019)

    Article  Google Scholar 

  23. Papageorgiou, E.I. (ed.): Fuzzy cognitive maps for applied sciences and engineering. Springer, Heidelberg (2014)

    Google Scholar 

  24. Papageorgiou, E.I., Parsopoulos, K., Stylios, C., Groumpos, P.P., Vrahatis, M.N.: Fuzzy cognitive maps learning using particle swarm optimization. Intell. Inf. Syst. 25(1), 95–121 (2005)

    Article  Google Scholar 

  25. Papageorgiou, E.I., Stylios, C.D., Groumpos, P.P.: Active Hebbian learning algorithm to train fuzzy cognitive maps. Int. J. Approx. Reason. 37, 219–249 (2004)

    Article  MathSciNet  Google Scholar 

  26. Pandey, P., Litoriya, R.: Fuzzy cognitive mapping analysis to recommend machine learning-based effort estimation technique for web applications. Int. J. Fuzzy Syst. (2020). https://doi.org/10.1007/s40815-020-00815-y

    Article  Google Scholar 

  27. Sauser, B.J., Ramirez-Marquez, J.E., Henry, D.: A system maturity index for the systems engineering life cycle. Int. J. Ind. Syst. Eng. 3(6), 673–691 (2008)

    Google Scholar 

  28. Scholz, J., De Meyer, A., Marques, A.S., et al.: Digital technologies for forest supply chain optimization: existing solutions and future trends. Environ. Manage. 62(6), 1108–1133 (2018)

    Article  Google Scholar 

  29. Sweta, S., Lal, K.: Personalized adaptive learner model in E-learning system using FCM and fuzzy inference system. Int. J. Fuzzy Syst. 19, 1249–1260 (2017)

    Article  Google Scholar 

  30. Wong, E.C.: Example based Hebbian learning may be sufficient to support human intelligence. bioRxiv preprint, https://doi.org/10.1101/758375

  31. Zadeh, L.A.: “Fuzzy sets” Archived 2015–08-13 at the Wayback Machine. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

  32. Ojala, A., Tyrvinen, P.: Developing cloud business models: a case study on cloud gaming. IEEE Softw. 28, 42–47 (2011). https://doi.org/10.1109/MS.2011.51

    Article  Google Scholar 

  33. Zappacosta, S., Mannella, F., Mirolli, M., Baldassarre, G.: General differential Hebbian learning: capturing temporal relations between events in neural networks and the brain. PLoS Comput. Biol. 14(8), e1006227 (2018)

    Article  Google Scholar 

  34. Zhong, R.Y., Xu, X., Aheleroff, S.: Smart manufacturing systems for industry 4.0: a conceptual framework. In: CIE47 Proceedings, 11–13 October 2017, Lisbon, Portugal (2017)

  35. Napoles, G., Leon Espinosay, M., Grauz, I., Vanhoof, K.: FCM expert: software tool for scenario analysis and pattern classification based on fuzzy cognitive maps. Int. J. Artif. Intell. Tools 27(7), 1860010 (2018). (25 pages)

    Article  Google Scholar 

  36. Kolodziejski, C., Porr, B., Woergoetter, F.: Mathematical properties of neuronal TD-rules and differential Hebbian learning: a comparison. Biol. Cybern. 98, 259–272 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 71672043), and partially supported by the Natural Science Foundation of Guangdong Province (No. 2020A1515010972).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baharak Makki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Makki, B. Further Developments on Application of Dynamic Fuzzy Cognitive Map Concept for Digital Business Models. Int. J. Fuzzy Syst. 22, 2680–2689 (2020). https://doi.org/10.1007/s40815-020-00955-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00955-1

Keywords

Navigation