Skip to main content

Advertisement

Log in

Optimization of Type-2 Fuzzy Logic Controller Design Using the GSO and FA Algorithms

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper presents a comparative study between the firefly algorithm (FA) and the galactic swarm optimization (GSO) method, where the performance of both methods is observed and tested in the optimization of a fuzzy controller for path tracking of an autonomous mobile robot. The main contribution of this work is finding the best method that generates an optimal vector of values for the membership function optimization of the fuzzy controller. This with the goal of improving the performance of the controller and thus the trajectory generated by the autonomous robot is closer to the desired trajectory. It should be noted that the fuzzy controller that is optimized is an interval type-2 fuzzy controller, which has a greater capability for managing uncertainty than a type-1 fuzzy controller. In this case, the limiting membership functions in the interval type-2 fuzzy sets are themselves type-1 fuzzy sets that define the footprint of uncertainty. Type-2 fuzzy controllers have been shown in previous works to handle better the control of robotic systems under noisy and dynamic conditions and this is why their optimal design is very important. Simulation results show that GSO outperforms FA in the optimal design of interval type-2 fuzzy controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

  2. Zadeh, L.A.: Fuzzy logic. Computer 21, 83–93 (1988)

    Article  Google Scholar 

  3. Zadeh, L.A.: Fuzzy logic computing with words. IEEE Trans. Fuzzy Syst. 4(2), 103–111 (1996)

    Article  Google Scholar 

  4. Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)

    Article  Google Scholar 

  5. Du, Z., Kao, Y., Zhao, X.: An input delay approach to interval type-2 fuzzy exponential stabilization for nonlinear unreliable networked sampled-data control systems. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2930473

    Article  Google Scholar 

  6. Qu, Z., Zhang, Z., Du, Z., Peng, M.: Interval type-2 fuzzy sampled-data optimal control for nonlinear systems with multiple conditions. Int. J. Fuzzy Syst. 21(5), 1480–1496 (2019)

    Article  MathSciNet  Google Scholar 

  7. Du, Z., Kao, Y., Park, J.H.: New results for sampled-data control of interval type-2 fuzzy nonlinear systems. J. Franklin Inst. 357(1), 121–141 (2020)

    Article  MathSciNet  Google Scholar 

  8. Du, Zhenbin, Yan, Zhenzheng, Zhao, Zhen: Interval type-2 fuzzy tracking control for nonlinear systems via sampled-data controller. Fuzzy Sets Syst. 356, 92–112 (2019)

    Article  MathSciNet  Google Scholar 

  9. Mendel, J.M.: Advances in type-2 fuzzy sets and systems. Inf. Sci. 177(1), 84–110 (2007)

    Article  MathSciNet  Google Scholar 

  10. Hagras, H.: Type-2 FLCs: a new generation of fuzzy controllers. IEEE Comput. Intell. Mag. 2(1), 30–43 (2007)

    Article  Google Scholar 

  11. Lagunes, M. L., Castillo, O., Soria, J.: Methodology for the optimization of a fuzzy controller using a bio-inspired algorithm. In: Proceedings of the North American Fuzzy Information Processing Society Annual Conference, Cancun, Mexico, 16 October 2017; Springer, Cham, Switzerland, Vol. 648, pp. 131–137 (2018)

  12. Lagunes, M.L., Castillo, O., Soria, J.: Optimization of membership function parameters for fuzzy controllers of an autonomous mobile robot using the firefly algorithm. In: Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications. Springer, Berlin, Germany, pp. 199–206 (2018)

  13. Lagunes, M.L., Castillo, O., Valdez, F., Soria, J., Melin, P.: Parameter optimization for membership functions of type-2 fuzzy controllers for autonomous mobile robots using the firefly algorithm. In: Proceedings of the North American Fuzzy Information Processing Society Annual Conference, Cancun, Mexico, 16 October 2017; Springer, Berlin, Germany. IEEE, Piscataway, NJ, USA, pp. 569–579 (2018)

  14. Bernal, E., et al.: Optimization of fuzzy controller using galactic swarm optimization with type-2 fuzzy dynamic parameter adjustment. Axioms 8(1), 26 (2019)

    Article  Google Scholar 

  15. Bernal, E., Castillo, O., Soria, J., Valdez, F.: Fuzzy galactic swarm optimization with dynamic adjustment of parameters based on fuzzy logic. Metaheuristics. 1–19 (2018)

  16. Wagner, C., Hagras, H.: A genetic algorithm based architecture for evolving type-2 fuzzy logic controllers for real world autonomous mobile robots. In: 2007 IEEE International Fuzzy Systems Conference. pp. 1–6 (2007)

  17. Astudillo, L., Castillo, O., Melin, P., Alanis, A., Soria, J., Aguilar, L.T.: Intelligent control of an autonomous mobile robot using type-2 fuzzy logic. Eng. Lett. 13, 3 (2006)

    Google Scholar 

  18. Wu, D., Tan, W.W.: Genetic learning and performance evaluation of interval type-2 fuzzy logic controllers. Eng. Appl. Artif. Intell. 19(8), 829–841 (2006)

    Article  Google Scholar 

  19. Wu, D.: On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers. IEEE Trans. Fuzzy Syst. 20(5), 832–848 (2012)

    Article  Google Scholar 

  20. Wu, D., Tan, W.W.: A type-2 fuzzy logic controller for the liquid-level process. In: 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No. 04CH37542), 2, pp. 953–958

  21. Yang, X.-S.: Nature-inspired metaheuristic algorithms. Luniver Press, Beckington (2010)

    Google Scholar 

  22. Yang, X.-S.: Firefly algorithm, lévy flights and global optimization. In: Research and Development in Intelligent Systems XXVI. Springer, London, UK, pp. 209–218 (2010)

  23. Muthiah-Nakarajan, V., Noel, M.M.: Galactic swarm optimization: a new global optimization metaheuristic inspired by galactic motion. Appl. Soft Comput. 38, 771–787 (2016)

    Article  Google Scholar 

  24. Bernal, E., Castillo, O., Soria, J., Valdez, F., Melin, P.: A variant to the dynamic adaptation of parameters in galactic swarm optimization using a fuzzy logic augmentation. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 1–7 (2018)

  25. Bernal, E., Castillo, O., Soria, J., Valdez, F.: Galactic swarm optimization with adaptation of parameters using fuzzy logic for the optimization of mathematical functions, pp. 131–140. Springer, Cham (2018)

    Google Scholar 

  26. Olivas, F., Valdez, F., Melin, P., Sombra, A., Castillo, O.: Interval type-2 fuzzy logic for dynamic parameter adaptation in a modified gravitational search algorithm. Inf. Sci. 476, 159–175 (2019)

    Article  Google Scholar 

  27. Valdez, F., Melin, P., Castillo, O.: An improved evolutionary method with fuzzy logic for combining particle swarm optimization and genetic algorithms. Appl. Soft Comput. 11(2), 2625–2632 (2011)

    Article  Google Scholar 

  28. Castillo, O., Neyoy, H., Soria, J., García, M., Valdez, F.: Dynamic fuzzy logic parameter tuning for ACO and its application in the fuzzy logic control of an autonomous mobile robot. Int. J. Adv. Robot. Syst. 10(1), 51 (2013)

    Article  Google Scholar 

  29. Amador-Angulo, L., et al.: Fuzzy sets in dynamic adaptation of parameters of a bee colony optimization for controlling the trajectory of an autonomous mobile robot. Sensors 16(9), 1458 (2016)

    Article  Google Scholar 

  30. Hossain, M.A., Ferdous, I.: Autonomous robot path planning in dynamic environment using a new optimization technique inspired by bacterial foraging technique. Rob. Auton. Syst. 64, 137–141 (2015)

    Article  Google Scholar 

  31. Lee, T.-C., Song, K.-T., Lee, C.-H., Teng, C.-C.: Tracking control of unicycle-modeled mobile robots using a saturation feedback controller. IEEE Trans. Control Syst. Technol. 9(2), 305–318 (2001)

    Article  Google Scholar 

  32. Martínez, R., Aguilar, L.T.: Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Inf. Sci. 179(13), 2158–2174 (2009)

    Article  Google Scholar 

  33. Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T.: A stable tracking control method for an autonomous mobile robot. In: Proceedings. 1990, IEEE International Conference on Robotics and Automation, IEEE Press, pp. 384–389

  34. Caraveo, C., Valdez, F., Castillo, O.: A new meta-heuristics of optimization with dynamic adaptation of parameters using type-2 fuzzy logic for trajectory control of a mobile robot. Algorithms 10(3), 85 (2017)

    Article  MathSciNet  Google Scholar 

  35. Peraza, C., Valdez, F., Castro, J.R., Castillo, O.: Fuzzy dynamic parameter adaptation in the harmony search algorithm for the optimization of the ball and beam controller. Adv. Oper. Res. (2018). https://doi.org/10.1155/2018/3092872

    Article  Google Scholar 

  36. Lagunes, M.L., Castillo, O., Soria, J., Garcia, M., Valdez, F.: Optimization of granulation for fuzzy controllers of autonomous mobile robots using the Firefly Algorithm. Granul. Comput. 4(2), 185–195 (2019)

    Article  Google Scholar 

  37. Lagunes, M.L., et al.: Multi-metaheuristic competitive model for optimization of fuzzy controllers. Algorithms 12(5), 90 (2019)

    Article  MathSciNet  Google Scholar 

  38. Eftimov, T., Korošec, P., Seljak, B.K.: A novel approach to statistical comparison of meta-heuristic stochastic optimization algorithms using deep statistics. Inf. Sci. 417, 186–215 (2017)

    Article  Google Scholar 

  39. García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 180(10), 2044–2064 (2010)

    Article  Google Scholar 

  40. Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

  41. Olivas, F., et al.: Comparative study of type-2 fuzzy particle swarm, bee colony and bat algorithms in optimization of fuzzy controllers. Algorithms 10(3), 101 (2017)

    Article  MathSciNet  Google Scholar 

  42. Ontiveros-Robles, E., Melin, P., Castillo, O.: Comparative analysis of noise robustness of type 2 fuzzy logic controllers. Kybernetika 54, 175–201 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Ontiveros-Robles, E., Melin, P., Castillo, O.: New methodology to approximate type-reduction based on a continuous root-finding Karnik Mendel algorithm. Algorithms 10(3), 77 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Castillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernal, E., Lagunes, M.L., Castillo, O. et al. Optimization of Type-2 Fuzzy Logic Controller Design Using the GSO and FA Algorithms. Int. J. Fuzzy Syst. 23, 42–57 (2021). https://doi.org/10.1007/s40815-020-00976-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-00976-w

Keywords