Skip to main content
Log in

An Advanced Optimization Technique for Smart Production Using α-Cut Based Quadrilateral Fuzzy Number

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In the design phase of a new smart product, production costs are unpredictable due to location, transport, and engineering design. In these situations, consequently, cost optimization becomes ambiguous. This paper presents a methodology to obtain optimization through a fuzzy linear programming problem (FLPP) in which fuzzy numbers signify the right-side parameters. The comparative investigation of modeling and optimizing creation cost through a new α-cut based quadrilateral fuzzy number is proposed to solve the fuzzy linear programming and the necessary operations on the proposed number. Due to the probabilistic increase and decrease in the accessibility of the various constraints, the actual expected total cost fluctuates. In this respect, a unique situation of instability is incorporated, and reasonable models to reduce the cost of eradication in the creation process are presented. The main endeavor is made to look at the credibility of optimized cost utilizing the α-cut based quadrilateral FLPP models, and the outcome is contrasted with its augmentation. The data of the production cost of RCF Kapurthala is taken, and the creation expenses of various mentors from the year 2010–2011 are considered as input parameters. The aggregate cost is focused on the objective function. The least low, lower, upper, and most upper bounds are computed for each situation, and then systems of optimized fuzzy LPP are constructed. The credibility of quadrilateral fuzzy LPP concerning all situations is obtained and using this membership grade, the minimum, and highest minimum costs are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Shanmuganayagam, V.: Current float techniques for resources scheduling. J. Constr. Eng. Manag. 115, 401–411 (1989)

    Article  Google Scholar 

  2. Adeli, H., Karim, A.: Scheduling/cost optimization and neural dynamics model for construction. Engineering 123(December), 450–458 (1997)

    Google Scholar 

  3. Zhang, M., Zhang, W., Sicotte, H., Yang, P.: A new validity measure for a correlation-based fuzzy C-means clustering algorithm. In: Proceedings of the 31st Annual International Conference IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine EMBC 2009, pp. 3865–3868 (2009). https://doi.org/10.1109/iembs.2009.5332582

  4. Liu, W.Y., Chen, Z.W., Bai, P., Fang, S.F., Shi, V.: A kind of improved method of fuzzy clustering. 2005 Int. Conf. Mach. Learn. Cybern. ICMLC 2005(August), 2646–2649 (2005). https://doi.org/10.1109/icmlc.2005.1527391

    Article  Google Scholar 

  5. Abdelkhalek, H.A., Refaie, H.S., Aziz, R.F.: Optimization of time and cost through learning curve analysis. Ain Shams Eng. J. (2020). https://doi.org/10.1016/j.asej.2019.12.007

    Article  Google Scholar 

  6. Batra, R.N., Uiah, A.: Competitive firm and the theory of input demand under price uncertainty author (s): Raveendra N. Batra and Aman Ullah Source: Journal of Political Economy, Vol. 82, No. 3 (May–Jun., 1974), pp. 537–548 Published by: The University of Chicago, vol. 82, no. 3, pp. 537–548 (2016)

  7. Greene, W.H.: The econometric approach to efficiency analysis. The Measurement of Productive Efficiency and Productivity Change (2008)

  8. Tabrizi, B.H., Razmi, J.: Introducing a mixed-integer non-linear fuzzy model for risk management in designing supply chain networks. J. Manuf. Syst. 32(2), 295–307 (2013). https://doi.org/10.1016/j.jmsy.2012.12.001

    Article  Google Scholar 

  9. Zadeh, L.A.: Fuzzy sets. Inf. Control (1965). https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  10. Faizi, S., Sałabun, W., Rashid, T., Watróbski, J., Zafar, S.: Group decision-making for hesitant fuzzy sets based on Characteristic Objects Method. Symmetry (2017). https://doi.org/10.3390/sym9080136

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, J., Huang, X.: Dual hesitant fuzzy probability. Symmetry (2017). https://doi.org/10.3390/sym9040052

    Article  MathSciNet  MATH  Google Scholar 

  12. Hou, S., Wang, H., Feng, S.: Attribute control chart construction based on fuzzy score number. Symmetry (2016). https://doi.org/10.3390/sym8120139

    Article  MathSciNet  Google Scholar 

  13. Sałabun, W., Piegat, A.: Comparative analysis of MCDM methods for the assessment of mortality in patients with acute coronary syndrome. Artif. Intell. Rev. (2017). https://doi.org/10.1007/s10462-016-9511-9

    Article  Google Scholar 

  14. Bucolo, M., Fortuna, L., La Rosa, M.: Complex dynamics through fuzzy chains. IEEE Trans. Fuzzy Syst. (2004). https://doi.org/10.1109/TFUZZ.2004.825969

    Article  MATH  Google Scholar 

  15. Piegat, A.: A new definition of the fuzzy set. Int. J. Appl. Math. Comput. Sci. 15(1), 125–140 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Stefanini, L., Sorini, L., Guerra, M.L.: Fuzzy numbers and fuzzy arithmetic. In: Handbook of Granular Computing (2008)

  17. Taleshian, A., Rezvani, S.: Multiplication operation on trapezoidal fuzzy numbers. J. Phys. Sci. (2011)

  18. Banerjee, S., Roy, T.K.: Arithmetic operations on generalized trapezoidal fuzzy number and its applications. TJFS 31, 16–44 (2012)

    Google Scholar 

  19. Garg, H., Ansha, : Arithmetic operations on generalized parabolic fuzzy numbers and its application. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 88(1), 15–26 (2018). https://doi.org/10.1007/s40010-016-0278-9

    Article  MathSciNet  MATH  Google Scholar 

  20. Klir, G.J.: Fuzzy arithmetic with requisite constraints. Fuzzy Sets Syst. 91(2), 165–175 (1997). https://doi.org/10.1016/S0165-0114(97)00138-3

    Article  MathSciNet  MATH  Google Scholar 

  21. Hall, R.I., Eilon, S.: Controlling production processes which are subject to linear trends. J. Oper. Res. Soc. 14(3), 279–289 (1963). https://doi.org/10.2307/3007391

    Article  Google Scholar 

  22. Mokhtari, H., Hasani, A.: A multi-objective model for cleaner production-transportation planning in manufacturing plants via fuzzy goal programming. J. Manuf. Syst. 44, 230–242 (2017). https://doi.org/10.1016/j.jmsy.2017.06.002

    Article  Google Scholar 

  23. Gibra, I.N.: Optimal production runs of processes subject to systematic trends. Int. J. Prod. Res. (1974). https://doi.org/10.1080/00207547408919571

    Article  Google Scholar 

  24. Wang, E., Su, T., Chang, M.: Comparative study of the applicability of fuzzy multi-objective linear programming models through cost-effective analysis for mold manufacturing. J. Manuf. Syst. 32(1), 206–219 (2013). https://doi.org/10.1016/j.jmsy.2012.10.003

    Article  Google Scholar 

  25. Kazaz, B., Sloan, T.W.: The impact of process deterioration on production and maintenance policies. Eur. J. Oper. Res. (2013). https://doi.org/10.1016/j.ejor.2012.11.052

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, C.H., Huang, K.W.: The determination of optimum process mean for a one-sided specification limit product with manufacturing cost and linear quality loss. J. Qual. 18(1), 19–33 (2011)

    Google Scholar 

  27. Su, T.S., Lin, Y.F.: Fuzzy multi-objective procurement/production planning decision problems for recoverable manufacturing systems. J. Manuf. Syst. (2015). https://doi.org/10.1016/j.jmsy.2014.07.007

    Article  Google Scholar 

  28. Kapur, K.C., Wang, C.J.: Economic design of specifications based on taguchi’s concept of quality loss function. In: American Society of Mechanical Engineers, Production Engineering Division (Publication) PED (1987)

  29. Wen, D., Mergen, A.E.: Running a process with poor capability. Qual. Eng. (1999). https://doi.org/10.1080/08982119908919270

    Article  Google Scholar 

  30. Chen, C.H., Chou, C.Y., Huang, K.W.: Determining the optimum process mean under quality loss function. Int. J. Adv. Manuf. Technol. (2002). https://doi.org/10.1007/s001700200196

    Article  Google Scholar 

  31. Atalay, K.D., Eraslan, E., Çinar, M.O.: A hybrid algorithm based on fuzzy linear regression analysis by quadratic programming for time estimation: an experimental study in manufacturing industry. J. Manuf. Syst. (2015). https://doi.org/10.1016/j.jmsy.2014.06.005

    Article  Google Scholar 

  32. McNally, R.C., Cavusgil, E., Calantone, R.J.: Product innovativeness dimensions and their relationships with product advantage, product financial performance, and project protocol. J. Prod. Innov. Manag. (2010). https://doi.org/10.1111/j.1540-5885.2010.00766.x

    Article  Google Scholar 

  33. Shi, L., Ólafsson, S., Chen, Q.: An optimization framework for product design. Manag. Sci. (2001). https://doi.org/10.1287/mnsc.47.12.1681.10243

    Article  MATH  Google Scholar 

  34. Jafari, H., Bateni, S., Daneshvar, P., et al.: Fuzzy mathematical modeling approach for the nurse scheduling problem: a case study. Int. J. Fuzzy Syst. 18, 320–332 (2016). https://doi.org/10.1007/s40815-015-0051-2

    Article  Google Scholar 

  35. Zhang, M., Tseng, M.M.: A product and process modeling based approach to study cost implications of product variety in mass customization. IEEE Trans. Eng. Manag. (2007). https://doi.org/10.1109/TEM.2006.889072

    Article  Google Scholar 

  36. Zengin, Y., Ada, E.: Cost management through product design: target costing approach. Int. J. Prod. Res. (2010). https://doi.org/10.1080/00207540903130876

    Article  Google Scholar 

  37. Al Haj, R.A., El-Sayegh, S.M.: Time-cost optimization model considering float-consumption impact. J. Constr. Eng. Manag. 141(5), 1–10 (2015)

    Article  Google Scholar 

  38. Abdulbaki, D., Al-Hindi, M., Yassine, A., Abou Najm, M.: An optimization model for the allocation of water resources. J. Clean. Prod. (2017). https://doi.org/10.1016/j.jclepro.2017.07.024

    Article  Google Scholar 

  39. Hong, J., Diabat, A., Panicker, V.V., Rajagopalan, S.: A two-stage supply chain problem with fixed costs: an ant colony optimization approach. Int. J. Prod. Econ. (2018). https://doi.org/10.1016/j.ijpe.2018.07.019

    Article  Google Scholar 

  40. Wang, G., Peng, J.: Fuzzy optimal solution of fuzzy number linear programming problems. Int. J. Fuzzy Syst. 21, 865–881 (2019). https://doi.org/10.1007/s40815-018-0594-0

    Article  MathSciNet  Google Scholar 

  41. Shaheen, A.A., Fayek, A.R., Abourizk, S.M.: Fuzzy numbers in cost range estimating. J. Constr. Eng. Manag. 133, 325–334 (2007)

    Article  Google Scholar 

  42. Sadeghi Sarcheshmah, M., Seifi, A.R.: Triangular and trapezoidal fuzzy state estimation with uncertainty on measurements. Adv. Electr. Electron. Eng. (2012). https://doi.org/10.15598/aeee.v10i3.686

    Article  Google Scholar 

  43. Jagadeeswari, M., Lakshmana Gomathi Nayagam, V.: Approximation of parabolic fuzzy numbers. Front. Artif. Intell. Appl. (2017). https://doi.org/10.3233/978-1-61499-828-0-107

    Article  Google Scholar 

  44. Grzegorzewski, P., Mrówka, E.: Trapezoidal approximations of fuzzy numbers. Fuzzy Sets Syst. (2005). https://doi.org/10.1016/j.fss.2004.02.015

    Article  MathSciNet  MATH  Google Scholar 

  45. Chen, C.T., Cheng, H.L.: A comprehensive model for selecting information system project under fuzzy environment. Int. J. Proj. Manag. (2009). https://doi.org/10.1016/j.ijproman.2008.04.001

    Article  Google Scholar 

  46. Veeramani, C., Sumathi, M.: Fuzzy mathematical programming approach for solving fuzzy linear fractional programming problem. RAIRO Oper. Res. (2014). https://doi.org/10.1051/ro/2013056

    Article  MathSciNet  MATH  Google Scholar 

  47. Ebrahimnejad, A., Tavana, M.: A novel method for solving linear programming problems with symmetric trapezoidal fuzzy numbers. Appl. Math. Model. (2014). https://doi.org/10.1016/j.apm.2014.02.024

    Article  MathSciNet  MATH  Google Scholar 

  48. Reza, D., Davood, J.: FFLP problem with symmetric trapezoidal fuzzy numbers. Decis. Sci. Lett. 4(2), 117–124 (2015). https://doi.org/10.5267/j.dsl.2015.1.004

    Article  Google Scholar 

  49. Bertone, A.M.A., Jafelice, R.S.D.M., da Câmara, M.A.: Fuzzy linear programming: optimization of an electric circuit model. TEMA 1, 1 (2018). https://doi.org/10.5540/tema.2017.018.03.419

    Article  Google Scholar 

  50. Ying Dong, J., Wan, S.P.: A new trapezoidal fuzzy linear programming method considering the acceptance degree of fuzzy constraints violated. Knowl. Based Syst. 148, 100–114 (2018)

    Article  Google Scholar 

  51. Karimi, H., Sadeghi-Dastaki, M., Javan, M.: A fully fuzzy best–worst multi attribute decision making method with triangular fuzzy number: a case study of maintenance assessment in the hospitals. Appl. Soft Comput. J. 86, 105882 (2020). https://doi.org/10.1016/j.asoc.2019.105882

    Article  Google Scholar 

  52. Bolos, M.I., Bradea, I.A., Delcea, C.: Linear programming and fuzzy optimization to substantiate investment decisions in tangible assets. Entropy (2020). https://doi.org/10.3390/e22010121

    Article  MathSciNet  Google Scholar 

  53. de Andrés-Sánchez, J.: Pricing European options with triangular fuzzy parameters: assessing alternative triangular approximations in the spanish stock option market. Int. J. Fuzzy Syst. 20, 1624–1643 (2018). https://doi.org/10.1007/s40815-018-0468-5

    Article  MathSciNet  Google Scholar 

  54. Wei, G.: Approaches to interval intuitionistic trapezoidal fuzzy multiple attribute decision making with incomplete weight information. Int. J. Fuzzy Syst. 17, 484–489 (2015). https://doi.org/10.1007/s40815-015-0060-1

    Article  MathSciNet  Google Scholar 

  55. Kaur, A., Kumar, A., Appadoo, S.S.: A note on “Approaches to interval intuitionistic trapezoidal fuzzy multiple attribute decision making with incomplete weight information”. Int. J. Fuzzy Syst. 21, 1010–1011 (2019). https://doi.org/10.1007/s40815018-0581-5

    Article  MathSciNet  Google Scholar 

  56. Bohlender, G., Kaufmann, A., Gupta, M.M.: Introduction to fuzzy arithmetic, theory and applications. Math. Comput. 47(176), 762 (1986). https://doi.org/10.2307/2008199

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunava Majumder.

Appendices

Appendix 1

Let \(\tilde{B}_{i}^{p}\) and \(\tilde{B}_{i}^{q}\) be quadrilateral fuzzy numbers with different confidence levels such that \(\beta^{p} \le \beta^{q}\). Take \(\beta^{s} \in [\beta^{p} ,\beta^{q} ]\) , i.e., \(\beta^{s} = \beta^{p}\) then \(\alpha^{s}\)-cut of \(\tilde{B}_{i}^{p}\) and \(\tilde{B}_{i}^{q}\) are

When \(\alpha^{p} \le \beta^{p} ,\alpha^{p} , \beta^{p} \ne 0\)

\(\tilde{B}_{i}^{p} = \left[ {\beta_{i}^{p} - \varepsilon_{i}^{p} , \beta_{i}^{p} - \varepsilon_{i}^{p} + \frac{{\alpha^{p} \varepsilon_{i}^{p} }}{{\beta^{p} }}} \right) \cup \left[ {\beta_{i}^{p} , \beta_{i}^{p} + \frac{{\overline{{\alpha^{p} }} - \beta^{p} }}{{\overline{{\beta^{p} }} }}\left( {\beta_{i}^{p*} - \beta_{i}^{p} } \right)} \right) \cup \left[ {\beta_{i}^{p*} , \alpha^{p} \varepsilon_{i}^{p*} + \left( {\beta_{i}^{p*} - \beta_{i}^{p} } \right)} \right]\) \(\tilde{B}_{i}^{q} = \left[ {\beta_{i}^{q} - \varepsilon_{i}^{q} , \beta_{i}^{q} - \varepsilon_{i}^{q} + \frac{{\alpha^{q} \varepsilon_{i}^{q} }}{{\beta^{q} }}} \right) \cup \left[ {\beta_{i}^{q} , \beta_{i}^{q} + \frac{{\overline{{\alpha^{q} }} - \beta^{q} }}{{\overline{{\beta^{q} }} }}\left( {\beta_{i}^{q*} - \beta_{i}^{q} } \right)} \right) \cup \left[ {\beta_{i}^{q*} , \alpha^{q} \varepsilon_{i}^{q*} + \left( {\beta_{i}^{q*} - \beta_{i}^{q} } \right)} \right]\)

$$\tilde{B}_{i}^{q + } = \left[ {\beta_{i}^{q} - \varepsilon_{i}^{q} , \beta_{i}^{q} - \varepsilon_{i}^{q} + \frac{{\alpha^{q} \varepsilon_{i}^{q + } }}{{\beta^{q} }}} \right) \cup \left[ {\beta_{i}^{q} , \beta_{i}^{q} + \frac{{\overline{{\alpha^{q} }} - \beta^{q} }}{{\overline{{\beta^{q} }} }}\left( {\beta_{i}^{q*} - \beta_{i}^{q} } \right)} \right) \cup \left[ {\beta_{i}^{q*} , \alpha^{q} \varepsilon_{i}^{q*} + \left( {\beta_{i}^{q*} - \beta_{i}^{q} } \right)} \right]\,\beta_{i}^{q} - \varepsilon_{i}^{q + } = (\beta_{i}^{q} - \varepsilon_{i}^{q} ) + \frac{{\beta^{s} }}{{\beta^{q} }}\varepsilon_{i}^{q} \Rightarrow \varepsilon_{i}^{q + } = \beta_{i}^{q} - (\beta_{i}^{q} - \varepsilon_{i}^{q} ) - \frac{{\beta^{s} }}{{\beta^{q} }}\varepsilon_{i}^{q}$$

Let \(\tilde{B}_{i}^{s} = \tilde{B}_{i}^{p} + \tilde{B}_{i}^{q + } = \{ y{\mid }y \in \tilde{B}_{\alpha }^{s} \} \,\forall \alpha^{s} \in \left[ {0,1} \right]\). Here \(\tilde{B}_{\alpha }^{s} = \left[ {\tilde{B}_{\alpha }^{sL} \left( {\alpha^{s} } \right), \tilde{B}_{\alpha }^{sU} \left( {\alpha^{s} } \right)} \right]\) be its \(\alpha^{s}\)-cuts such that \(\tilde{B}_{\alpha }^{sL} \left( {\alpha^{s} } \right) = \tilde{B}_{i}^{pL} (\alpha^{p} ) + \tilde{B}_{i}^{qL} (\alpha^{q} )\,{\text{and}}\,\tilde{B}_{\alpha }^{sU} \left( {\alpha^{s} } \right) = \tilde{B}_{i}^{pU} (\alpha^{p} ) + \tilde{B}_{i}^{qU} (\alpha^{q} )\,\,{\text{i}}.{\text{e}}.\)

$$\tilde{B}_{\alpha }^{s} = \left[ {\tilde{B}_{i}^{pL} \left( {\alpha^{p} } \right) + \tilde{B}_{i}^{qL} \left( {\alpha^{q} } \right) , \tilde{B}_{i}^{pU} \,\left( {\alpha^{p} } \right) + \tilde{B}_{i}^{qU} \left( {\alpha^{q} } \right)} \right]$$
$$\tilde{B}_{\alpha }^{s} = I_{1}^{s} \cup I_{2}^{s} \cup I_{3}^{s} , where$$
$$I_{1}^{s} = \left[ {\beta_{i}^{p} - \varepsilon_{i}^{p} + \beta_{i}^{q} - \varepsilon_{i}^{q} ,\beta_{i}^{p} - \varepsilon_{i}^{p} + \frac{{\alpha^{p} \varepsilon_{i}^{p} }}{{\beta^{p} }} + \beta_{i}^{q} - \varepsilon_{i}^{q} + \frac{{\alpha^{q} \varepsilon_{i}^{q + } }}{{\beta^{q} }}} \right)$$
$$I_{2}^{s} = \left[ {\beta_{i}^{p} + \beta_{i}^{q} ,\beta_{i}^{p} + \frac{{\overline{{\alpha^{p} }} - \beta^{p} }}{{\overline{{\beta^{p} }} }}\left( {\beta_{i}^{p*} - \beta_{i}^{p} } \right) + \beta_{i}^{q} + \frac{{\overline{{\alpha^{q} }} - \beta^{q} }}{{\overline{{\beta^{q} }} }}\left( {\beta_{i}^{q*} - \beta_{i}^{q} } \right)} \right]$$
$$I_{3}^{s} = \left[ {\beta_{i}^{p*} + \beta_{i}^{q*} ,\left( {\beta_{i}^{p*} + \varepsilon_{i}^{p*} } \right) - \alpha^{p} \varepsilon_{i}^{p*} + \left( {\beta_{i}^{q*} + \varepsilon_{i}^{q*} } \right) - \alpha^{q} \varepsilon_{i}^{q*} } \right]$$

Now

$$I_{1}^{s} = \left[ {\beta_{i}^{p} + \beta_{i}^{q} - (\varepsilon_{i}^{p} + \varepsilon_{i}^{q} ) ,\beta_{i}^{p} + \beta_{i}^{q} - (\varepsilon_{i}^{p} + \varepsilon_{i}^{q} ) + \frac{{\alpha^{p} \varepsilon_{i}^{p} }}{{\beta^{p} }} + \frac{{\alpha^{q} \varepsilon_{i}^{q + } }}{{\beta^{q + } }}} \right)$$
$$\alpha^{p} = \alpha^{q} = \alpha^{s}$$
$$I_{1}^{s} = \left[ {\beta_{i}^{p} + \beta_{i}^{q} - (\varepsilon_{i}^{p} + \varepsilon_{i}^{q} ) ,\beta_{i}^{p} + \beta_{i}^{q} - (\varepsilon_{i}^{p} + \varepsilon_{i}^{q} ) + \alpha^{s} \left( {\frac{{\varepsilon_{i}^{p} }}{{\beta^{p} }} + \frac{{\varepsilon_{i}^{q + } }}{{\beta^{q} }}} \right)} \right)$$
$$\beta_{i}^{p} + \beta_{i}^{q} - (\varepsilon_{i}^{p} + \varepsilon_{i}^{q} ) + \alpha^{s} \left( {\frac{{\varepsilon_{i}^{p} }}{{\beta^{p} }} + \frac{{\varepsilon_{i}^{q + } }}{{\beta^{q} }}} \right) - y = 0$$
$$f_{{B^{s} }}^{U} \left( y \right) = \frac{{y - \left( {\beta_{i}^{p} - \varepsilon_{i}^{p} } \right) + (\beta_{i}^{q} - \varepsilon_{i}^{q} )}}{{\left( { \frac{{\varepsilon_{i}^{p} }}{{\beta^{p} }} + \frac{{\varepsilon_{i}^{q + } }}{{\beta^{q + } }} } \right) }}$$
$$when \, \beta^{p} = \beta^{q + } = \beta^{s}$$
$$g_{{B^{s} }}^{U} \left( y \right) = \beta^{s} \left( {\frac{{y - \left[ {\left( {\beta_{i}^{p} - \varepsilon_{i}^{p} } \right) + (\beta_{i}^{q} - \varepsilon_{i}^{q} } \right)]}}{{\varepsilon_{i}^{p} + \varepsilon_{i}^{q + } }}} \right)$$
$$g_{{B^{s} }}^{U} \left( y \right) = \beta^{s} \left( {\frac{{y - \left[ {\left( {\beta_{i}^{p} - \varepsilon_{i}^{p} } \right) + (\beta_{i}^{q} - \varepsilon_{i}^{q} } \right)]}}{{\varepsilon_{i}^{p} + \beta_{i}^{q} - (\beta_{i}^{q} - \varepsilon_{i}^{q} ) - \frac{{\beta^{r} }}{{\beta^{p} }}\varepsilon_{i}^{q} }}} \right)$$
$$g_{{B^{s} }}^{U} \left( y \right) = \beta^{s} \left( {\frac{{y - \left[ {\left( {\beta_{i}^{p} - \varepsilon_{i}^{p} } \right) + (\beta_{i}^{q} - \varepsilon_{i}^{q} } \right)]}}{{\beta_{i}^{p} + \beta_{i}^{q} - \frac{{\beta^{s} }}{{\beta^{p} }}\varepsilon_{i}^{q} - \left[ {\left( {\beta_{i}^{p} - \varepsilon_{i}^{p} } \right) + (\beta_{i}^{q} - \varepsilon_{i}^{q} } \right)]}}} \right)$$
$$g_{{B^{s} }}^{U} \left( y \right) = \beta^{s} \left( {\frac{{y - \left( {\beta_{i}^{s} - \varepsilon_{i}^{s} } \right)}}{{\beta_{i}^{p} + \beta_{i}^{q} - \frac{{\beta^{s} }}{{\beta^{p} }}\varepsilon_{i}^{q} - \left( {\beta_{i}^{s} - \varepsilon_{i}^{s} } \right)}}} \right)$$
$${\text{where}}\, \beta_{i}^{s} = \beta_{i}^{p} + \beta_{i}^{q} ,\varepsilon_{i}^{s} = \varepsilon_{i}^{p} + \varepsilon_{i}^{q}$$
$$\left( {\beta_{i}^{s} - \varepsilon_{i}^{s} } \right) \le y \le \beta_{i}^{p} + \beta_{i}^{q} - \frac{{\beta^{s} }}{{\beta^{p} }}\varepsilon_{i}^{q}$$

Now

$$I_{2}^{s} = \left[ {\beta_{i}^{p} + \beta_{i}^{q} ,\beta_{i}^{p} + \frac{{\overline{{\alpha^{p} }} - \beta^{p} }}{{\overline{{\beta^{p} }} }}\left( {\beta_{i}^{p*} - \beta_{i}^{p} } \right) + \beta_{i}^{q} + \frac{{\overline{{\alpha^{q} }} - \beta^{q} }}{{\overline{{\beta^{q} }} }}\left( {\beta_{i}^{q*} - \beta_{i}^{q} } \right)} \right]$$
$$I_{2}^{s} = \left[ {\beta_{i}^{p} + \beta_{i}^{q} ,\beta_{i}^{p} + \beta_{i}^{q} + \frac{{\overline{{\alpha^{p} }} - \beta^{p} }}{{\overline{{\beta^{p} }} }}\left( {\beta_{i}^{p*} - \beta_{i}^{p} } \right) + \frac{{\overline{{\alpha^{q} }} - \beta^{q} }}{{\overline{{\beta^{q} }} }}\left( {\beta_{i}^{q*} - \beta_{i}^{q} } \right)} \right]$$
$${\text{here }}\frac{{\overline{{\alpha^{p} }} - \beta^{p} }}{{\overline{{\beta^{p} }} }} = \frac{{\overline{{\alpha^{q} }} - \beta^{q} }}{{\overline{{\beta^{q} }} }} = \frac{{\overline{{\alpha^{s} }} - \beta^{s} }}{{\overline{{\beta^{s} }} }}$$
$$I_{2}^{s} = \left[ {\beta_{i}^{p} + \beta_{i}^{q} ,\beta_{i}^{p} + \beta_{i}^{q} + \left( {\overline{{\alpha^{s} }} - \beta^{s} } \right)\left( {\frac{{\beta_{i}^{p*} - \beta_{i}^{p} }}{{\overline{{\beta^{p} }} }} + \frac{{\beta_{i}^{q*} - \beta_{i}^{q} }}{{\overline{{\beta^{q} }} }}} \right)} \right]$$
$$\beta_{i}^{p} + \beta_{i}^{q} + \left( {\overline{{\alpha^{s} }} - \beta^{s} } \right)\left( {\frac{{\beta_{i}^{p} - \beta_{i}^{p} }}{{\overline{{\beta^{p} }} }} + \frac{{\beta_{i}^{q} - \beta_{i}^{q} }}{{\overline{{\beta^{q} }} }}} \right) - y = 0$$
$${\text{when}}\, \overline{{\beta^{p} }} = \overline{{\beta^{q} }} = \overline{{\beta^{s} }}$$
$$g_{{B^{s} }}^{U} \left( y \right) = \overline{{\alpha^{s} }} - \beta^{s} = \left( {\frac{{y - \left( {\beta_{i}^{p} + \beta_{i}^{q} } \right)}}{{\beta_{i}^{p*} - \beta_{i}^{p} + \beta_{i}^{q*} - \beta_{i}^{q} }}} \right) \times \overline{{\beta^{s} }}$$
$$\overline{{\alpha^{s} }} = \beta^{s} + \left( {\frac{{y - \left( {\beta_{i}^{p} + \beta_{i}^{q} } \right)}}{{\beta_{i}^{p*} - \beta_{i}^{p} + \beta_{i}^{q*} - \beta_{i}^{q} }}} \right) \times \overline{{\beta^{s} }} \Rightarrow \overline{{\alpha^{s} }} = \beta^{s} + \left( {\frac{{y - \beta_{i}^{s} }}{{\beta_{i}^{s*} - \beta_{i}^{s} }}} \right) \times \overline{{\beta^{s} }}$$
$${\text{where }}\,\beta_{i}^{s*} = \beta_{i}^{p*} + \beta_{i}^{q*} ,\beta_{i}^{s} = \beta_{i}^{p} + \beta_{i}^{q}$$
$$I_{3}^{s} = \left[ {\beta_{i}^{p*} + \beta_{i}^{q*} ,\left( {\beta_{i}^{p*} + \varepsilon_{i}^{p*} } \right) - \alpha^{p} \varepsilon_{i}^{p*} + \left( {\beta_{i}^{q*} + \varepsilon_{i}^{q*} } \right) - \alpha^{q} \varepsilon_{i}^{q*} } \right]$$
$$\alpha^{p} = \alpha^{q} = \alpha^{s}$$
$$I_{3}^{s} = \left[ {\beta_{i}^{p*} + \beta_{i}^{q*} ,\left( {\beta_{i}^{p*} + \varepsilon_{i}^{p*} } \right) + \left( {\beta_{i}^{q*} + \varepsilon_{i}^{q*} } \right) - \alpha^{s} \left( {\varepsilon_{i}^{p*} + \varepsilon_{i}^{q*} } \right)} \right]$$
$$y - \left( {\beta_{i}^{p*} + \varepsilon_{i}^{p*} } \right) - \left( {\beta_{i}^{q*} + \varepsilon_{i}^{q*} } \right) + \alpha^{s} \left( {\varepsilon_{i}^{p*} + \varepsilon_{i}^{q*} } \right) = 0$$
$$g_{{B^{s} }}^{U} \left( y \right) = \alpha^{s} = \left( {\frac{{\left( {\beta_{i}^{p*} + \varepsilon_{i}^{p*} } \right) + \left( {\beta_{i}^{q*} + \varepsilon_{i}^{q*} } \right) - y}}{{\varepsilon_{i}^{p*} + \varepsilon_{i}^{q*} }}} \right) \Rightarrow g_{{B^{s} }}^{U} \left( y \right) = \left( {\frac{{\left( {\beta_{i}^{s*} + \varepsilon_{i}^{s*} } \right) - y}}{{\varepsilon_{i}^{s*} }}} \right)$$
$${\text{where}} ,\, \beta_{i}^{s*} = \beta_{i}^{p*} + \beta_{i}^{q*} \,,\,\,\varepsilon_{i}^{s*} = \varepsilon_{i}^{p*} + \varepsilon_{i}^{q*}$$
$$B_{i}^{s} \left( y \right) = \left\{ {\begin{array}{*{20}c} {\beta^{s} + \left( {\frac{{y - \beta_{i}^{s} }}{{\beta_{i}^{s*} - \beta_{i}^{s} }}} \right) \times \overline{{\beta^{s} }} } & {{\text{When}}\, \beta_{i}^{s} \le y \le \beta_{i}^{s*} } \\ {\beta^{s} \left( {\frac{{y - \left( {\beta_{i}^{s} - \varepsilon_{i}^{s} } \right)}}{{\beta_{i}^{p} + \beta_{i}^{q} - \frac{{\beta^{s} }}{{\beta^{p} }}\varepsilon_{i}^{q} - \left( {\beta_{i}^{s} - \varepsilon_{i}^{s} } \right)}}} \right)} & {{\text{When }}\,\beta_{i}^{s} - \varepsilon_{i}^{s} \le y \le \beta_{i}^{p} + \beta_{i}^{q} - \frac{{\beta^{s} }}{{\beta^{p} }}\varepsilon_{i}^{q} } \\ {\frac{{\left( {\beta_{i}^{s*} + \varepsilon_{i}^{s*} } \right) - y}}{{\varepsilon_{i}^{s*} }}} & {{\text{When}}\, \beta_{i}^{s*} \le y \le \beta_{i}^{s*} + \varepsilon_{i}^{s*} } \\ 0 & {\text{otherwise}} \\ \end{array} } \right.$$
$$\beta_{i}^{s} - \varepsilon_{i}^{s} = (\beta_{i}^{p} - \varepsilon_{i}^{p} ) + (\beta_{i}^{q} - \varepsilon_{i}^{q} ).$$
$$\beta_{i}^{s} = \beta_{i}^{p} + \beta_{i}^{q} - \frac{{\beta^{s} }}{{\beta^{p} }}\varepsilon_{i}^{q} .$$
$$\beta_{i}^{s*} = \beta_{i}^{p*} + \beta_{i}^{q*} .$$
$$\beta_{i}^{s*} + \varepsilon_{i}^{s*} = \left( {\beta_{i}^{p*} + \varepsilon_{i}^{p*} } \right) + \left( {\beta_{i}^{q*} + \varepsilon_{i}^{q*} } \right).$$

Appendix 2

Proof As the quadrilateral membership functions of \(\tilde{B}_{i}^{p}\) and \(\tilde{B}_{i}^{q}\) are given in Eqs. (17) and (18), respectively. Thus, in order to find the membership of \(\tilde{B}_{i}^{s}\) = \(\tilde{B}_{i}^{p} \times \tilde{B}_{i}^{q}\) = (\(\beta_{i}^{s} - \varepsilon_{i}^{s}\), \(\beta_{i}^{s} , \beta_{i}^{s*}\), \(\beta_{i}^{s*} + \varepsilon_{i}^{s*}\))

Let \(\tilde{B}_{i}^{s} = \tilde{B}_{i}^{p} \times \tilde{B}_{i}^{q + } = \left\{ {y{\mid }y \in \tilde{B}_{\alpha }^{s} } \right\}\,\forall \alpha^{s} \in \left[ {0,1} \right]\). Here \(\tilde{B}_{\alpha }^{s} = \left[ {\tilde{B}_{\alpha }^{sL} \left( {\alpha^{s} } \right), \,\tilde{B}_{\alpha }^{sU} \left( {\alpha^{s} } \right)} \right]\) be its \(\alpha^{s}\)-cuts such that \(\tilde{B}_{\alpha }^{sL} \left( {\alpha^{s} } \right) = \tilde{B}_{i}^{pL} (\alpha^{p} ) \times \tilde{B}_{i}^{qL} (\alpha^{q} )\,{\text{and}}\,\tilde{B}_{\alpha }^{sU} \left( {\alpha^{s} } \right) = \tilde{B}_{i}^{pU} (\alpha^{p} ) \times \tilde{B}_{i}^{qU} (\alpha^{q} )\,\,{\text{i}} . {\text{e}}\)

$$\tilde{B}_{\alpha }^{s} = \left[ {\tilde{B}_{i}^{pL} \left( {\alpha^{p} } \right) \times \tilde{B}_{i}^{qL} \left( {\alpha^{q} } \right) , \tilde{B}_{i}^{pU} (\alpha^{p} ) \times \tilde{B}_{i}^{qU} (\alpha^{q} )} \right]$$
$$\tilde{B}_{\alpha }^{s} = I_{1}^{s} \cup I_{2}^{s} \cup I_{3}^{s} ,\,{\text{where}}$$
$$I_{1}^{s} = \left[ {(\beta_{i}^{p} - \varepsilon_{i}^{p} )(\beta_{i}^{q} - \varepsilon_{i}^{q} ),\,\left\{ {\beta_{i}^{p} - \varepsilon_{i}^{p} + \frac{{\alpha^{p} \varepsilon_{i}^{p} }}{{\beta^{p} }}} \right\}\left\{ {\beta_{i}^{q} - \varepsilon_{i}^{q} + \frac{{\alpha^{q} \varepsilon_{i}^{q + } }}{{\beta^{q} }}} \right\}} \right)$$
$$I_{2}^{s} = \left[ {\beta_{i}^{p} \beta_{i}^{q} ,\left\{ {\beta_{i}^{p} + \frac{{\overline{{\alpha^{p} }} - \beta^{p} }}{{\overline{{\beta^{p} }} }}\left( {\beta_{i}^{p*} - \beta_{i}^{p} } \right)} \right\} \left\{ { \beta_{i}^{q} + \frac{{\overline{{\alpha^{q} }} - \beta^{q} }}{{\overline{{\beta^{q} }} }}\left( {\beta_{i}^{q*} - \beta_{i}^{q} } \right)} \right\}} \right]$$
$$I_{3}^{s} = \left[ {\beta_{i}^{p*} \beta_{i}^{q*} ,\left\{ {\left( {\beta_{i}^{p*} + \varepsilon_{i}^{p*} } \right) - \alpha^{p} \varepsilon_{i}^{p*} } \right\}\left\{ {\left( {\beta_{i}^{q*} + \varepsilon_{i}^{q*} } \right) - \alpha^{q} \varepsilon_{i}^{q*} } \right\}} \right]$$

Now,

$$I_{1}^{s} = \left[ {\left( {\beta_{i}^{p} - \varepsilon_{i}^{p} } \right)\left( { \beta_{i}^{q} - \varepsilon_{i}^{q} } \right) ,\left\{ {\beta_{i}^{p} - \varepsilon_{i}^{p} + \frac{{\alpha^{p} \varepsilon_{i}^{p} }}{{\beta^{p} }}} \right\}\left\{ {\beta_{i}^{q} - \varepsilon_{i}^{q} + \frac{{\alpha^{q} \varepsilon_{i}^{q + } }}{{\beta^{q} }}} \right\}} \right)$$
$$\alpha^{p} = \alpha^{q} = \alpha^{s} \, {\text{and}} \, \beta^{p} = \beta^{q + } = \beta^{s}$$
$$\left\{ {\beta_{i}^{p} - \varepsilon_{i}^{p} + \frac{{\alpha^{p} \varepsilon_{i}^{p} }}{{\beta^{p} }}} \right\}\left\{ {\beta_{i}^{q} - \varepsilon_{i}^{q} + \frac{{\alpha^{q} \varepsilon_{i}^{q + } }}{{\beta^{q} }}} \right\} - y = 0$$
$$\left( {\alpha^{s} } \right)^{2} \frac{{\varepsilon_{i}^{p} \left( {\varepsilon_{i}^{q + } - \varepsilon_{i}^{q} } \right)}}{{\overline{{\beta^{s} }} \overline{{\beta^{q} }} }} + \alpha^{s} \left\{ {\frac{{(\beta_{i}^{p} - \varepsilon_{i}^{p} )\left( {\varepsilon_{i}^{q + } - \varepsilon_{i}^{q} } \right)}}{{\overline{{\beta^{q} }} }} + \frac{{(\beta_{i}^{q} - \varepsilon_{i}^{q} )\varepsilon_{i}^{p} }}{{\overline{{\beta^{s} }} }}} \right\} + (\beta_{i}^{p} - \varepsilon_{i}^{p} )(\beta_{i}^{q} - \varepsilon_{i}^{q} ) - y = 0$$

\({\text{Take}}\,M_{2} = \frac{{\varepsilon_{i}^{p} \left( {\varepsilon_{i}^{q + } - \varepsilon_{i}^{q} } \right)}}{{\overline{{\beta^{s} }} \overline{{\beta^{q} }} }},\,\,K_{2} = \frac{{(\beta_{i}^{p} - \varepsilon_{i}^{p} )\left( {\varepsilon_{i}^{q + } - \varepsilon_{i}^{q} } \right)}}{{\overline{{\beta^{q} }} }} + \frac{{(\beta_{i}^{q} - \varepsilon_{i}^{q} )\varepsilon_{i}^{p} }}{{\overline{{\beta^{s} }} }},\,\,{\text{and}}\,N_{2} = (\beta_{i}^{p} - \varepsilon_{i}^{p} )(\beta_{i}^{q} - \varepsilon_{i}^{q} )\,\left( {\alpha^{s} } \right)^{2} {{ M}}_{2} + \,\alpha^{s} {{ K}}_{2} + \,{{ N}}_{2} - y = 0.\)

$$\alpha^{s} = \frac{{ - K_{2} \pm \sqrt {K_{2}^{2} + 4M_{2} \left( {y - N_{2} } \right)} }}{{2M_{2} }}$$

Similarly, \(In \, I_{2}^{s} = \left[ {\beta_{i}^{p} \beta_{i}^{q} ,\left\{ {\beta_{i}^{p} + \frac{{\overline{{\alpha^{p} }} - \beta^{p} }}{{\overline{{\beta^{p} }} }}\left( {\beta_{i}^{p*} - \beta_{i}^{p} } \right)} \right\} \left\{ { \beta_{i}^{q} + \frac{{\overline{{\alpha^{q} }} - \beta^{q} }}{{\overline{{\beta^{q} }} }}\left( {\beta_{i}^{q*} - \beta_{i}^{q} } \right)} \right\}} \right]\)

$$\alpha^{s} = \beta^{s} + \frac{{ - K_{1} + \sqrt {K_{1}^{2} + 4M_{1} \left( {y - N_{1} } \right)} }}{{2M_{1} }}$$

And \(I_{3}^{s} = \left[ {\beta_{i}^{p*} \beta_{i}^{q*} ,\left\{ {\left( {\beta_{i}^{p*} + \varepsilon_{i}^{p*} } \right) - \alpha^{p} \varepsilon_{i}^{p*} } \right\}\left\{ {\left( {\beta_{i}^{q*} + \varepsilon_{i}^{q*} } \right) - \alpha^{q} \varepsilon_{i}^{q*} } \right\}} \right]\)

$$\alpha^{s} = \frac{{K_{3} + \sqrt {K_{3}^{2} + 4M_{3} \left( {y - N_{3} } \right)} }}{{2M_{3} }}$$

Appendix 3

3.1 Objective Function

Let \(y_{1} , y_{2} , \ldots ,y_{20}\) be variables for different constraints.

Minimize Z = 66.4y1 + 61.58y2 + 64.47y3 + 264.12y4 + 69.17y5 + 130.48y6 + 46.03y7 + 164.11y8 + 262.29y9 + 129.41y10 + 52.16y11 + 202.79y12 + 206.74y13 + 142.17y14 + 236.53y15 + 302.08y16 + 234.01y17 + 236.54y18 + 98.67y19 +119.13y20.

Subjected to constraints:

4.38y1 + 4.07y2 + 4.04y3 + 9.88y4 + 4.10y5 + 7.38y6 + 2.5y7 + 8.11y8 + 14.81y9 + 7.22y10 + 3.05y11 + 9.18y12 + 10.70y13 + 6.38y14 + 10.38y15 + 10.51y16 + 11.24y17 + 11.57y18 + 5.91y19 + 7.79y20 ≥ Blab.

45.7y1 + 41.99y2 +44.49y3 +211.93y4 + 49.13y5 +94.06y6 +33.62y7 +124.32y8 +190.08y9 +93.76y10 +37.29y11 +156.57y12 +153.98y13 +110.86y14 +184.34y15 +246.6y16 +178.25y17 +179.28y18 + 70.13y19 + 81.84y20 ≥ Bmat.

7.33y1 + 6.81y2 + 6.77y3 + 16.55y4 + 6.87y5 + 12.36y6 + 4.58y7 + 14.35y8 + 24.4y9 + 13.17y10 + 5.55y11 + 15.27y12 + 17.84y13 + 10.59y14 + 16.98y15 + 17.19y16 + .18.42y17 + 18.97y18 + 9.70y19 + 12.86y20 ≥ Bfoh.

5.8y1 + 5.39y2 +5.35y3 +13.09y4 +5.43y5 + 9.78y6 +2.91y7 +9.14y8 + 19.3y9 + 8.39y10 +3.54y11  + 12.08y12 + 14.11y13 + 8.38y14 + 13.43y15 + 13.59y16 + 14.57y17 + 15.01y18 + 7.67y19 + 10.17y20 ≥ \(B_{\text{aoh}}\).

1.17y1 + 1.09y2 + 1.08y3 + 2.65y4 + 1.10y5 + 1.98y6 + 0.75y7 + 2.35y8 + 3.91y9 + 2.16y10 + 0.91y11 + 2.45y12 + 2.86y13 + 1.70y14 + 2.72y15 + 2.75y16 + 2.95y17 + 3.04y18 + 1.55y19 + 2.06y20Btooh.

0.37y1 +0.34y2 +0.36y3 +1.74y4 +0.40y5 +0.77y6 +0.23y7 +0.85y8 +1.56y9 +0.64y10 +0.25y11 + 1.28y12 + 1.26y13 + 0.91y14 + 1.51y15 + 2.02y16 + 1.46y17 + 1.47y18 + 0.58y19 + 0.67y20Bsoh.

14.69y1 + 13.63y2 + 13.57y3 + 34.04y4 + 13.80y5 + 24.89y6 + 8.47y7 + 26.68y8 + 49.16y9 + 24.35y10 + 10.26y11 + 31.09y12 + 36.07y13 + 21.58y14 + 34.64y15 + 35.56y16 + 37.39y17 + 38.49y18 + 19.49y19 + 25.76y20Btoh.

1.63y1 + 1.89y2 + 2.37y3 + 8.27y4 + 2.13y5 + 4.14y6 + 1.44y7 + 5y8 + 8.23y9 + 4.07y10 + 1.57y11 + 5.96y12 + 5.99y13 + 3.35y14 + 7.17y15 +9.42y16 + 7.12y17 + 7.20y18 + 3.14y19 + 3.74 ≤ Bproof.

For all \(y_{i}\) ≥ 0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Chandrawat, R.K., Sarkar, B. et al. An Advanced Optimization Technique for Smart Production Using α-Cut Based Quadrilateral Fuzzy Number. Int. J. Fuzzy Syst. 23, 107–127 (2021). https://doi.org/10.1007/s40815-020-01002-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-01002-9

Keywords

Navigation