Skip to main content
Log in

Observer-Based Adaptive Fuzzy Formation Control of Nonlinear Multi-Agent Systems with Nonstrict-Feedback Form

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

An adaptive fuzzy formation control problem is investigated for a nonlinear nonstrict-feedback multi-agent system with unmeasurable state in this paper. Fuzzy logic systems (FLSs) are employed to approximate the unknown nonlinear functions of the nonlinear multi-agent system. A distributed fuzzy state observer is constructed to estimate unmeasurable states. The repeated differentiations problem of virtual controllers can be avoided by introducing a first-order filter into the backstepping technique. The proposed fuzzy adaptive formation control method can ensure the close-loop system is stable, and the target of the formation performance between all the agents and leader can be achieved. A simulation example can illustrate the effectiveness of the proposed control method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burmeister, B., Haddadi, A., Matylis, G.: Application of multi-agent systems in traffic and transportation. IEEE Trans. Softw. Eng. 144(1), 51–60 (1997)

    Article  Google Scholar 

  2. Goldman, C.V., Rosenschein, J.S.: Mutual supervised learning in multagent systems. In: Proceedings of IJCAI 95 Workshop, pp. 85–96 (1992)

  3. Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Trans. Automat. Control. 49(9), 1465–1476 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. AI on the WWW-supply and demand agent: IEEE Exp. 4(1), 50–55 (1995)

    Google Scholar 

  5. Krulwich, B.: The inforfinder agent: Learning user interests through heuristi phrase extaction. IEEE Exp. 5(1), 22–27 (1995)

    Google Scholar 

  6. Vidal, R., Shakernia, O., Sastry, S.: Formation control of nonholo nomic mobile robots with omnidirectional visual servoing and motion segmentation. In: IEEE International Conference on Robotics and Automation 1, pp. 584–589(2003)

  7. Ren, W., Beard, R.W.: A decentralized scheme for spacecraft for mation flying via the virtual structure approach. J. Guid. Control Dyn. 27(1), 73–82 (2004)

    Article  Google Scholar 

  8. Leonard, M.R., Zoubir, A.M.: Multi-target tracking in distributed sensor networks using particle PHD filters. Signal Process. 159, 130–146 (2019)

    Article  Google Scholar 

  9. Wen, G.X., Chen, C.L.P., Liu, Y.J.: Neural network-based adaptive leader-following consensus control for a class of nonlinear multiagent state-delay systems. IEEE Trans. Cybern. 47(8), 2151–2160 (2017)

    Article  Google Scholar 

  10. Tsai, C.C., Wu, H.L., Tai, F.C., Chen, Y.S.: Distributed consensus formation control with collision and obstacle avoidance for uncertain networked omnidirectional multi-robot systems using fuzzy wavelet neural networks. Int. J. Fuzzy Syst. 19, 1375–1391 (2017)

    Article  MathSciNet  Google Scholar 

  11. Zha, L.J., Liu, J.L., Cao, J.D.: Resilient event-triggered consensus control for nonlinear muti-agent systems with DoS attacks. J. Franklin Inst. Eng. Appl. Math. 356(13), 7071–7090 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liang, H.J., Zhang, L.C., Sun, Y.H., Huang, T.W.: Containment control of semi-Markovian multi-agent systems with switching topologies. IEEE Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2019.2946248

    Article  Google Scholar 

  13. Zhang, H.T., Cheng, Z.M., Chen, G.R.: Model predictive flocking control for second-order multi-agent systems with input constraints. IEEE Trans. Circuits Syst. 62(6), 1599–1606 (2015)

    Article  MathSciNet  Google Scholar 

  14. Lou, Y., Hong, Y.: Target containment control of multi-agent systems with random switching interconnection topologies. Automatica. 48(5), 879–885 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dong, X., Shi, Z., Lu, G.: Time-varying formation control for high-order linear swarm systems with switching interaction topologies. IET Control Theory Appl. 8(18), 2162–2170 (2014)

    Article  MathSciNet  Google Scholar 

  16. Dong, X.W., Sun, C., Hu, G.Q.: Time-varying output formation control for linear multi-agent systems with switching topologies. Int. J. Robust Nonlinear Control. 26(16), 3558–3579 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, R., Dong, X.W., Li, Q.D.: Distributed time-varying formation control for linear swarm systems with switching topologies using an adaptive output-feedback approach. IEEE Trans. Syst. Man Cybern. Syst. 49(12), 2664–2675 (2019)

    Article  Google Scholar 

  18. Zhang, H.G., Wang, Y.C.: Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with mixed time delays. IEEE Trans. Neural Netw. 19(2), 366–370 (2008)

    Article  MathSciNet  Google Scholar 

  19. Liang, H.J., Guo, X.Y., Pan, Y.M., Huang, T.W.: Event-triggered fuzzy bipartite tracking control for network systems based on distributed reduced-order observers. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2982618

    Article  Google Scholar 

  20. Zhang, H.G., Shan, Q.H., Wang, Z.S.: Stability analysis of neural networks with two delay components based on dynamic delay interval method. IEEE Trans. Neural Netw. Learn. Syst. 28(2), 259–267 (2017)

    Article  MathSciNet  Google Scholar 

  21. Liu, Y.J., Gong, M.Z., Tong, S.C., Chen, C.L.P., Li, D.J.: Adaptive fuzzy output feedback control for a class of nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst. 26(5), 2607–2617 (2018)

    Article  Google Scholar 

  22. Zou, W.C., Shi, P., Xiang, Z.R., Shi, Y.: Consensus tracking control of switched stochastic nonlinear multiagent systems via event-triggered strategy. IEEE Trans. Neural Netw. Learn. Syst. 31(3), 1036–1045 (2020)

    Article  MathSciNet  Google Scholar 

  23. Li, Y.M., Tong, S.C.: Adaptive fuzzy control with prescribed performance for block-triangular-structured nonlinear systems. IEEE Trans. Fuzzy Syst. 26(3), 1153–1163 (2018)

    Article  Google Scholar 

  24. Zou, W.C., Shi, P., Xiang, Z.R., Shi, Y.: Finite-time consensus of second-order switched nonlinear multi-agent systems. IEEE Trans. Neural Netw. Learn. Syst. 31(5), 1757–1762 (2020)

    Article  MathSciNet  Google Scholar 

  25. Tong, S.C., Li, Y.M.: Adaptive fuzzy output feedback tracking backstepping control of strict-feedback nonlinear systems with unknown dead zones. IEEE Trans. Fuzzy Syst. 20(1), 168–180 (2012)

    Article  Google Scholar 

  26. Zou, W.C., Ahn, K., Xiang, Z.R.: Event-triggered consensus tracking control of stochastic nonlinear multiagent systems. IEEE Syst. J. 13(4), 4051–4059 (2019)

    Article  Google Scholar 

  27. Chen, B., Lin, C., Liu, X., Liu, K.F.: Adaptive fuzzy tracking control for a class of MIMO nonlinear systems in nonstrict-feedback form. IEEE Trans. Cybern. 45(12), 2744–2755 (2017)

    Article  Google Scholar 

  28. Li, Y., Tong, S.: Command-filtered-based fuzzy adaptive control design for MIMO-switched nonstrict-feedback nonlinear systems. IEEE Trans. Fuzzy Syst. 25(3), 668–681 (2017)

    Article  Google Scholar 

  29. Wang, H.Q., Chen, B., Lin, C.: Approximation-based adaptive fuzzy control for a class of non-strict-feedback stochastic nonlinear systems. Sci. China Inf. Sci. 3, 32203–032203 (2014)

    Google Scholar 

  30. Sun, Y., Chen, B., Lin, C., Wang, H.H.: Adaptive neural control for a class of stochastic non-strict-feedback nonlinear systems with time-delay. Neurocomputing 214, 750–757 (2016)

    Article  Google Scholar 

  31. Wang, Q., Hua, Q., Yi, Y.: Multi-agent formation control in switching networks using backstepping design. Int. J. Control Automat. Syst. 15, 1569–1576 (2017)

    Article  Google Scholar 

  32. Ding, L., Guo, G.: Formation control for ship fleet based on backstepping. Control Decis. 27(2), 299–303 (2012)

    MathSciNet  Google Scholar 

  33. Dai, S.L., He, S., Lin, H.: Platoon formation control with prescribed performance guarantees for USVs. IEEE Trans. Ind. Electron. 65(5), 4237–4246 (2018)

    Article  Google Scholar 

  34. Park, B.S., Yoo, S.J.: An error transformation approach for connectivity-preserving and collision-avoiding formation tracking of networked uncertain underactuated surface vessels. IEEE Trans. Cybern. 49(8), 2955–2966 (2019)

    Article  Google Scholar 

  35. He, S., Wang, M., Dai, S.L.: Leader-follower formation control of USVs with prescribed performance and collision avoidance. IEEE Trans. Ind. Inform. 15(1), 572–581 (2019)

    Article  Google Scholar 

  36. Liu, Y.J., Tong, S.C., Wang, D., Li, T.S., Chen, C.L.P.: Adaptive neural output feedback controller design with reduced-order observer for a class of uncertain nonlinear SISO systems. IEEE Trans. Neural Netw. 22(8), 1328–1334 (2011)

    Article  Google Scholar 

  37. Su, H., Zhang, W.H.: Adaptive fuzzy control of MIMO nonstrict-feedback nonlinear systems with fuzzy dead zones and time delays. Nonlinear Dyn. 95, 1565–1583 (2019)

    Article  MATH  Google Scholar 

  38. Zhao, X., Yang, H., Karimi, H.R., Zhu, Y.Z.: Adaptive neural control of MIMO nonstrict-feedback nonlinear systems with time delay. IEEE Trans. Cybern. 46(6), 1337–1349 (2016)

    Article  Google Scholar 

  39. Chen, B., Zhang, H.G., Lin, C.: Observer-based adaptive neural network control for nonlinear systems in nonstrict-feedback form. IEEE Trans. Neural Netw. Learn. Syst. 27(1), 89–98 (2015)

    Article  MathSciNet  Google Scholar 

  40. Tong, S.C., Li, C.Y., Li, Y.M.: Fuzzy adaptive observer backstep ping control for MIMO nonlinear systems. Fuzzy Sets Syst. 160(19), 2755–2775 (2009)

    Article  MATH  Google Scholar 

  41. Bai, L., Zhou, Q., Wang, L.: Observer-based adaptive control for stochastic nonstrict-feedback systems with unknown backlash-like hysteresis. Int. J. Adapt. Control Signal Process. 31(10), 1481–1490 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Li, Y.M., Qu, F.Y., Tong, S.C.: Observer-based fuzzy adaptive finite-time containment control of nonlinear multiagent systems with input delay. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.2970454

    Article  Google Scholar 

  43. Tong, S.C., He, X.L., Li, Y.M.: Adaptive fuzzy backstepping robust control for uncertain nonlinear systems based on small-gain approach. Fuzzy Sets Syst. 161(6), 771–796 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Li, Y.F., Hua, C.C., Wu, S.S., Guan, X.P.: Output feedback distributed containment control for high-order nonlinear multiagent systems. IEEE Trans. Cybern. 47(8), 2032–2043 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61903169; 51674140), the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Natural Science Foundation of Liaoning (2019-BS-126; 2019-MS-173; 2019LNQN05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Liu, X., Deng, X. et al. Observer-Based Adaptive Fuzzy Formation Control of Nonlinear Multi-Agent Systems with Nonstrict-Feedback Form . Int. J. Fuzzy Syst. 23, 680–691 (2021). https://doi.org/10.1007/s40815-020-01004-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-01004-7

Keywords

Navigation