Skip to main content
Log in

Modeling Interactive Multiattribute Decision-Making via Probabilistic Linguistic Term Set Extended by Dempster–Shafer Theory

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In multiattribute decision-making (MADM), more and more attention is paid to the interaction between attributes when considering the actual decision environment. As a result, interactive MADM has become an emerging and challenging area of research whose success will greatly facilitate the development of decision-making. This paper models the interactive MADM problem and its contribution is multifaceted. First, the concept of probabilistic linguistic term set (PLTS) is extended by Dempster–Shafer theory (DST), which helps to express more uncertain information, followed by some basic operations, such as score function and aggregation operator. In virtue of evidential best-worst method and the principle of maximum entropy, then a novel nonadditive measure determination method is developed based on the 2-order additive measure to better model the interaction between attributes. Further, the generalized PLTS-based Choquet integral is defined by which generalized PLTSs on a nonadditive measure can be reasonably aggregated. Finally, an interactive MADM model is constructed and the technical details are described. The proposed approach is implemented to select the supplier for medical devices, and its effectiveness is emphasized by comparison with other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liao, H., Wu, X.: DNMA: a double normalization-based multiple aggregation method for multi-expert multi-criteria decision making. Omega 94, 102058 (2020)

    Article  Google Scholar 

  2. Tian, Y., Liu, L., Mi, X., Kang, B.: Zslf: a new soft likelihood function based on z-numbers and its application in expert decision system. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2997328

  3. Fei, L., Xia, J., Feng, Y., Liu, L.: An electre-based multiple criteria decision making method for supplier selection using dempster-shafer theory. IEEE Access 7, 84701–84716 (2019)

    Article  Google Scholar 

  4. Xiao, F.: GIQ: A generalized intelligent quality-based approach for fusing multi-source information. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2991296

  5. Xiao, F.: Evidence combination based on prospect theory for multi-sensor data fusion. ISA Trans. (2020). https://doi.org/10.1016/j.isatra.2020.06.024

  6. Xiao, F., Cao, Z., Jolfaei, A.: A novel conflict measurement in decision making and its application in fault diagnosis. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.3002431

  7. Xiao, F.: A distance measure for intuitionistic fuzzy sets and its application to pattern classification problems. IEEE Trans. Syst Man Cyber. (2019). https://doi.org/10.1109/TSMC.2019.2958635

  8. Fei, L., Feng, Y., Liu, L.: On pythagorean fuzzy decision making using soft likelihood functions. Int. J. Intell. Syst. 34(12), 3317–3335 (2019)

    Article  Google Scholar 

  9. Liao, H., Gou, X., Xu, Z., Zeng, X.-J., Herrera, F.: Hesitancy degree-based correlation measures for hesitant fuzzy linguistic term sets and their applications in multiple criteria decision making. Inf. Sci. 508, 275–292 (2020)

    Article  MathSciNet  Google Scholar 

  10. Xingli, W., Liao, H.: Utility-based hybrid fuzzy axiomatic design and its application in supply chain finance decision making with credit risk assessments. Comput. Ind. 114, 103144 (2020)

    Article  Google Scholar 

  11. Xiao, F.: A new divergence measure for belief functions in D-S evidence theory for multisensor data fusion. Inf. Sci. 514, 462–483 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Xiao, F.: EFMCDM: Evidential fuzzy multicriteria decision making based on belief entropy. IEEE Trans. Fuzzy Syst. 28(7), 1477–1491 (2020)

    Google Scholar 

  13. Wang, Y.-M., Yang, J.-B., Xu, D.-L.: Environmental impact assessment using the evidential reasoning approach. Eur. J. Oper. Res. 174(3), 1885–1913 (2006)

    Article  MATH  Google Scholar 

  14. Zhou, M., Liu, X.-B., Yang, J.-B., Chen, Y.-W., Wu, J.: Evidential reasoning approach with multiple kinds of attributes and entropy-based weight assignment. Knowl.-Based Syst. 163, 358–375 (2019)

    Article  Google Scholar 

  15. Chen, Y., Chen, Y.-W., Xu, X.-B., Pan, C.-C., Yang, J.-B., Yang, G.-K.: A data-driven approximate causal inference model using the evidential reasoning rule. Knowl.-Based Syst. 88, 264–272 (2015)

    Article  Google Scholar 

  16. Chen, S.-M., Cheng, S.-H., Chiou, C.-H.: Fuzzy multiattribute group decision making based on intuitionistic fuzzy sets and evidential reasoning methodology. Inf. Fusion 27, 215–227 (2016)

    Article  Google Scholar 

  17. Pang, Q., Wang, H., Xu, Z.: Probabilistic linguistic term sets in multi-attribute group decision making. Inf. Sci. 369, 128–143 (2016)

    Article  Google Scholar 

  18. Yang, J.-B., Xu, D.-L.: Evidential reasoning rule for evidence combination. Artif. Intell. 205, 1–29 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yang, J.-B., Xu, D.-L.: On the evidential reasoning algorithm for multiple attribute decision analysis under uncertainty. IEEE Trans. Syst. Man. Cyber. A 32(3), 289–304 (2002)

    Article  Google Scholar 

  20. Chang, L., Zhou, Y., Jiang, J., Li, M., Zhang, X.: Structure learning for belief rule base expert system: a comparative study. Knowl.-Based Syst. 39, 159–172 (2013)

    Article  Google Scholar 

  21. Fu, C., Yang, J.-B., Yang, S.-L.: A group evidential reasoning approach based on expert reliability. Eur. J. Oper. Res. 246(3), 886–893 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang, Jian-Bo, Liu, Jun, Wang, Jin, Sii, How-Sing, Wang, Hong-Wei: Belief rule-base inference methodology using the evidential reasoning approach-rimer. IEEE Trans. Syst. Man. Cyber. Part A 36(2), 266–285 (2006)

    Article  Google Scholar 

  23. Zhou, Z.-J., Hu, C.-H., Xu, D.-L., Chen, M.-Y., Zhou, D.-H.: A model for real-time failure prognosis based on hidden Markov model and belief rule base. Eur. J. Oper. Res. 207(1), 269–283 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liao, H., Peng, X., Gou, X.: Medical supplier selection with a group decision-making method based on incomplete probabilistic linguistic preference relations. Int. J. Fuzzy Syst. (2020). https://doi.org/10.1007/s40815-020-00885-y

  25. Li, B., Zhang, Y., Xu, Z.: The medical treatment service matching based on the probabilistic linguistic term sets with unknown attribute weights. Int. J. Fuzzy Syst. (2020). https://doi.org/10.1007/s40815-020-00844-7

  26. Liu, P., Li, Y., Teng, F.: Bidirectional projection method for probabilistic linguistic multi-criteria group decision-making based on power average operator. Int. J. Fuzzy Syst. 21(8), 2340–2353 (2019)

    Article  MathSciNet  Google Scholar 

  27. Lei, F., Wei, G., Gao, H., Wu, J., Wei, C.: Topsis method for developing supplier selection with probabilistic linguistic information. Int. J. Fuzzy Syst. 1–11 (2020)

  28. Zhang, X., Gou, X., Xu, Z., Liao, H.: A projection method for multiple attribute group decision making with probabilistic linguistic term sets. Int. J. Mach. Learn. Cybern. 10(9), 2515–2528 (2019)

    Article  Google Scholar 

  29. Wang, X., Xu, Z., Gou, X., Trajkovic, L.: Tracking a maneuvering target by multiple sensors using extended kalman filter with nested probabilistic-numerical linguistic information. IEEE Trans. Fuzzy Syst. 28(2), 346–360 (2020)

    Article  Google Scholar 

  30. Li, Y., Zhang, Y., Xu, Z.: A decision-making model under probabilistic linguistic circumstances with unknown criteria weights for online customer reviews. Int. J. Fuzzy Syst. 1–13 (2020)

  31. Qin, M., Tang, Y., Wen, J.: An improved total uncertainty measure in the evidence theory and its application in decision making. Entropy 22(4), 487 (2020)

    Article  MathSciNet  Google Scholar 

  32. Xue, Y., Deng, Y.: Entailment for intuitionistic fuzzy sets based on generalized belief structures. Int. J. Intell. Syst. 35(6), 963–982 (2020)

    Article  Google Scholar 

  33. Fei, L., Feng, Y., Liu, L.: Evidence combination using owa-based soft likelihood functions. Int. J. Intell. Syst. 34(9), 2269–2290 (2019)

    Article  Google Scholar 

  34. Mao, S., Han, Y., Deng, Y., Pelusi, D.: A hybrid DEMATEL-FRACTAL method of handling dependent evidences. Eng. Appl. Artif. Intell. 91, 103543 (2020)

    Article  Google Scholar 

  35. Xiao, F.: Generalization of Dempster–Shafer theory: A complex mass function. Appl. Intell. (2019). https://doi.org/10.1007/s10489-019-01617-y

  36. Liu, P., Wang, P.: Multiple attribute group decision making method based on intuitionistic fuzzy einstein interactive operations. Int. J. Fuzzy Syst. (2020) https://doi.org/10.1007/s40815-020-00809-w

  37. Fei, L., Feng, Y.: A novel retrieval strategy for case-based reasoning based on attitudinal choquet integral. Eng. Appl. Artif. Intell. 94, 103791 (2020)

    Article  Google Scholar 

  38. Zhang, D., Li, Y., Wu, C.: An extended todim method to rank products with online reviews under intuitionistic fuzzy environment. J. Oper. Res. Soc. 71(2), 322–334 (2020)

    Article  Google Scholar 

  39. Aggarwal, M., Tehrani, A.F.: Modelling human decision behaviour with preference learning. Inf. J. Comput. 31(2), 318–334 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Beliakov, G.: Construction of aggregation functions from data using linear programming. Fuzzy Sets Syst. 160(1), 65–75 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Grabisch, M., Kojadinovic, I., Meyer, P.: A review of methods for capacity identification in choquet integral based multi-attribute utility theory: applications of the kappalab r package. Eur. J. Oper. Res. 186(2), 766–785 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Marichal, J.-L., Roubens, M.: Determination of weights of interacting criteria from a reference set. Eur. J. Oper. Res. 124(3), 641–650 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Murillo, J., Guillaume, S., Bulacio, P.: k-maxitive fuzzy measures: a scalable approach to model interactions. Fuzzy Sets Syst. 324, 33–48 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Tehrani, A.F., Cheng, W., Dembczyński, K., Hüllermeier, E.: Learning monotone nonlinear models using the choquet integral. Mach. Learn. 89(1–2), 183–211 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Wu, J.-Z., Pap, E., Szakal, A.: Two kinds of explicit preference information oriented capacity identification methods in the context of multicriteria decision analysis. Int. Trans. Oper. Res. 25(3), 807–830 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Li, X., Zhang, X.: Sugeno integral of set-valued functions with respect to multi-submeasures and its application in madm. Int. J. Fuzzy Syst. 20(8), 2534–2544 (2018)

    Article  MathSciNet  Google Scholar 

  47. Liao, Z., Liao, H., Tang, M., Al-Barakati, A., Llopis-Albert, C.: A Choquet integral-based hesitant fuzzy gained and lost dominance score method for multi-criteria group decision making considering the risk preferences of experts: Case study of higher business education evaluation. Inf. Fusion 62, 121–133 (2020)

    Article  Google Scholar 

  48. Liu, P., Zhang, X.: A multicriteria decision-making approach with linguistic d numbers based on the choquet integral. Cogn. Comput. 11(4), 560–575 (2019)

    Article  Google Scholar 

  49. Sirbiladze, G.: Associated probabilities’ aggregations in interactive multiattribute decision making for q-rung orthopair fuzzy discrimination environment. Int. J. Intell. Syst. 35(3), 335–372 (2020)

    Article  Google Scholar 

  50. Fei, L., Feng, Y.: An attitudinal nonlinear integral and applications in decision making (2020) https://doi.org/10.1007/s40815-020-00862-5

  51. Mu, Z., Zeng, S.: Some novel intuitionistic fuzzy information fusion methods in decision making with interaction among attributes. Soft. Comput. 23(20), 10439–10448 (2019)

    Article  MATH  Google Scholar 

  52. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38(2), 325–339 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  53. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    Book  MATH  Google Scholar 

  54. Smets, P., Kennes, R.: The transferable belief model. Artif. Intell. 66(2), 191–234 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sugeno, M.: Theory of fuzzy integrals and its applications, Doct. Thesis, Tokyo Institute of technology

  56. Choquet, G.: Theory of capacities, In: Annales de l’institut Fourier, Vol. 5, pp. 131–295 (1954)

  57. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  58. Hwang, C.-L., Yoon, K.: Methods for multiple attribute decision making, In: Multiple attribute decision making, Springer, Berlin, pp. 58–191 (1981)

  59. Wang, Z., Leung, K.sak, Wang, J.: A genetic algorithm for determining nonadditive set functions in information fusion. Fuzzy Sets Syst. 102(3), 463–469 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  60. Aggarwal, M.: Attitudinal choquet integrals and applications in decision making. Int. J. Intell. Syst. 33(4), 879–898 (2018)

    Article  Google Scholar 

  61. Wu, J.-Z., Zhang, Q.: 2-order additive fuzzy measure identification method based on diamond pairwise comparison and maximum entropy principle. Fuzzy Optim. Decis. Making 9(4), 435–453 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  62. Wu, J.-Z., Zhang, Q.: 2-order additive fuzzy measures identification method based on maximum entropy principle. Syst. Eng. Electr. 32(11), 2346–2351 (2010)

    MATH  Google Scholar 

  63. Wu, J.-Z., Beliakov, G.: k-order representative capacity. J. Intell. Fuzzy Syst. 38(3), 3105–3115 (2020)

    Article  Google Scholar 

  64. Beliakov, G., James, S., Wu, J.-Z.: k-order fuzzy measures and k-order aggregation functions. Discrete Fuzzy Meas. 382, 193–203 (2019)

    Article  Google Scholar 

  65. Wu, J., Zhang, Q.: Nonadditive Measure Theory and Multi-criteria Decision Making. Science Press, Beijing (2013)

    Google Scholar 

  66. Grabisch, M.: K-order additive discrete fuzzy measures and their representation. Fuzzy Sets Syst. 92(2), 167–189 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  67. Fei, L., Lu, J., Feng, Y.: An extended best-worst multi-criteria decision-making method by belief functions and its applications in hospital service evaluation. Comput. Ind. Eng. 142, 106355 (2020)

    Article  Google Scholar 

  68. Rezaei, J.: Best-worst multi-criteria decision-making method. Omega 53, 49–57 (2015)

    Article  Google Scholar 

  69. Grabisch, M., Sugeno, M., Murofushi, T.: Fuzzy measures and integrals: theory and applications, p. 2010. Physica, Heidelberg (2000)

  70. Rota, G.-C.: On the foundations of combinatorial theory i. theory of möbius functions. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 2(4), 340–368 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  71. Jia, F., Liu, Y., Wang, X.: An extended mabac method for multi-criteria group decision making based on intuitionistic fuzzy rough numbers. Expert Syst. Appl. 127, 241–255 (2019)

    Article  Google Scholar 

  72. Corrente, S., Greco, S., Ishizaka, A.: Combining analytical hierarchy process and choquet integral within non-additive robust ordinal regression. Omega 61, 2–18 (2016)

    Article  Google Scholar 

  73. Yager, R.R., Alajlan, N.: Sugeno integral with possibilistic inputs with application to multi-criteria decision making. Int. J. Intell. Syst. 31(8), 813–826 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the grants from the National Natural Science Foundation of China (#71472053, #91646105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liguo Fei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, L., Feng, Y. Modeling Interactive Multiattribute Decision-Making via Probabilistic Linguistic Term Set Extended by Dempster–Shafer Theory. Int. J. Fuzzy Syst. 23, 599–613 (2021). https://doi.org/10.1007/s40815-020-01019-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-01019-0

Keywords

Navigation