Skip to main content

Advertisement

Log in

\({L_\infty }\) Fault Estimation and Fault-Tolerant Control for Nonlinear Systems by T–S Fuzzy Model Method with Local Nonlinear Models

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper investigates the problems of the observer-based fault estimation (FE) and fault-tolerant control (FTC) for nonlinear systems subjected to external disturbances by the T–S fuzzy model method with local nonlinear models. Firstly, an FE strategy is proposed based on the unknown input observer technology, where the local nonlinear terms can be decoupled from the FE error system for relaxing the design of observer. Then, by using the FE information, a fuzzy fault-tolerant controller is designed to guarantee the stability of the system. Additionally, in the design schemes of the FE observer and the fault-tolerant controller, the \({L_\infty }\) method is used to deal with the problems of FE and FTC for the system with persistent disturbance such that the robustness of the system against the persistent external disturbance can be increased. Compared with the traditional \({H_\infty }\) method which is only applicable for dealing with the energy bounded signals, the \({L_\infty }\) FTC strategy proposed in this paper can deal with the persistent disturbance such that the shortcomings of the traditional \({H_\infty }\) approach are overcome. Finally, the effectiveness of the proposed method is verified by simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang, G., Ye, D.: Reliable \({H_{\infty }}\) control of linear systems with adaptive mechanism. IEEE Trans. Autom. Control 55(1), 242–247 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Wang, W., Wen, C.: Adaptive compensation for infinite number of actuator failures or faults. Automatica 47(10), 2197–2210 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jin, X.-Z., Yang, G.-H., Che, W.-W.: Adaptive pinning control of deteriorated nonlinear coupling networks with circuit realization. IEEE Trans. Neural Netw. Learn. Syst. 23(9), 1345–1355 (2012)

    Article  Google Scholar 

  4. Chang, W.-J., Tsai, Y.-S., Ku, C.-C.: Fuzzy fault tolerant control via Takagi–Sugeno fuzzy models for nonlinear systems with multiplicative noises. Int. J. Fuzzy Syst., vol. 16(3) (2014)

  5. Shi, P., Liu, M., Zhang, L.: Fault-tolerant sliding-mode-observer synthesis of Markovian jump systems using quantized measurements. IEEE Trans. Indust. Electron. 62(9), 5910–5918 (2015)

    Article  Google Scholar 

  6. Wang, X., Yang, G.-H.: Cooperative adaptive fault-tolerant tracking control for a class of multi-agent systems with actuator failures and mismatched parameter uncertainties. IET Control Theory Appl. 9(8), 1274–1284 (2015)

    Article  MathSciNet  Google Scholar 

  7. Li, X.-J., Yang, G.-H.: Adaptive fault-tolerant synchronization control of a class of complex dynamical networks with general input distribution matrices and actuator faults. IEEE Trans. Neural Netw. Learn. Syst. 28(3), 559–569 (2015)

    Article  MathSciNet  Google Scholar 

  8. Li, Xiao-Jian, Yang, Guang-Hong: Neural-network-based adaptive decentralized fault-tolerant control for a class of interconnected nonlinear systems. IEEE Trans. Neural Netw. Learn. Syst. 29(1), 144–155 (2016)

    Article  MathSciNet  Google Scholar 

  9. Zhou, Z., Zhong, M., Wang, Y.: Fault diagnosis observer and fault-tolerant control design for unmanned surface vehicles in network environments. IEEE Access, vol. 7, pp. 173694–173702 (2019)

  10. Pham, H.-T., Bourgeot, J.-M., Benbouzid, M.E.H.: Comparative investigations of sensor fault-tolerant control strategies performance for marine current turbine applications. IEEE J. Oceanic Eng. 43(4), 1024–1036 (2017)

    Article  Google Scholar 

  11. Cao, F., Sun, H., Li, Y., Tong, S.: Fuzzy adaptive fault-tolerant control for a class of active suspension systems with time delay. Int. J. Fuzzy Syst. 21(7), 2054–2065 (2019)

    Article  MathSciNet  Google Scholar 

  12. Li, S., Kang, W., Ding, D.-W.: Observer-based fuzzy fault-tolerant control for nonlinear parabolic PDEs. Int. J. Fuzzy Syst. 22(1), 111–121 (2020)

    Article  Google Scholar 

  13. Wang, Z., Liu, L., Li, T., Zhang, H.: Minimum-learning-parameters-based adaptive neural fault tolerant control with its application to continuous stirred tank reactor. IEEE Trans. Syst. Man Cybernet. 50(4), 1275–1285 (2020)

    Article  Google Scholar 

  14. Yang, H., Xia, Y., Liu, B.: Fault detection for T-S fuzzy discrete systems in finite-frequency domain. IEEE Trans. Syst. Man Cybernet. 41(4), 911–920 (2011)

    Article  Google Scholar 

  15. Zhang, X., Polycarpou, M.M., Parisini, T.: Adaptive fault diagnosis and fault-tolerant control of MIMO nonlinear uncertain systems. Int. J. Control 83(5), 1054–1080 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shen, Q., Jiang, B., Cocquempot, V.: Adaptive fuzzy observer-based active fault-tolerant dynamic surface control for a class of nonlinear systems with actuator faults. IEEE Trans. Fuzzy Syst. 22(2), 338–349 (2013)

    Article  Google Scholar 

  17. Li, H., Liu, H., Gao, H., Shi, P.: Reliable fuzzy control for active suspension systems with actuator delay and fault. IEEE Trans. Fuzzy Syst. 20(2), 342–357 (2012)

    Article  Google Scholar 

  18. Lin, C., Wang, G., Lee, T .H., He, Y.: LMI Approach to Analysis and Control of Takagi–Sugeno Fuzzy Systems with Time Telay, vol. 351. Springer Science & Business Media, New York (2007)

    MATH  Google Scholar 

  19. Wang, Y., Zheng, L., Zhang, H., Zheng, W. X.: Fuzzy observer-based repetitive tracking control for nonlinear systems. IEEE Trans. Fuzzy Syst., pp. 1–1 (2019), https://doi.org/10.1109/TFUZZ.2019.2936808

  20. Huang, C.-P.: Model based fuzzy control with affine TS delayed models applied to nonlinear systems. Int. J. Innov. Comput. Inform. Control 8(5), 2979–2993 (2012)

    Google Scholar 

  21. Li, Y., Tong, S., Li, T.: Adaptive fuzzy backstepping control design for a class of pure-feedback switched nonlinear systems. Nonlinear Anal. 16, 72–80 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Guerra, T.M., Sala, A., Tanaka, K.: Fuzzy control turns 50: 10 years later. Fuzzy Sets Syst. 281, 168–182 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, Y., Tong, S., Li, T.: Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via backstepping. Nonlinear Anal. 14(1), 483–494 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, Y., Liu, L., Feng, G.: Robust adaptive output feedback control to a class of non-triangular stochastic nonlinear systems. Automatica 89(89), 325–332 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhu, L., Li, T., Yu, R., Wu, Y., Ning, J.: Observer-based adaptive fuzzy control for intelligent ship autopilot with input saturation. Int. J. Fuzzy Syst. 22(5), 1416–1429 (2020)

    Article  Google Scholar 

  26. Sun, W., Su, S., Wu, Y., Xia, J.: A novel adaptive fuzzy control for output constrained stochastic non-strict feedback nonlinear systems. IEEE Trans. Fuzzy Syst., pp. 1–1, (2020), https://doi.org/10.1109/TFUZZ.2020.2969909

  27. Pan, Y., Du, P., Xue, H., Lam, H.-K.: Singularity-free fixed-time fuzzy control for robotic systems with user-defined performance. IEEE Trans. Fuzzy Syst. (2020)

  28. Du, P., Pan, Y., Li, H., Lam, H.-K.: Nonsingular finite-time event-triggered fuzzy control for large-scale nonlinear systems. IEEE Trans. Fuzzy Syst. (2020)

  29. Sun, W., Wu, Y., Sun, Z.: Command filter-based finite-time adaptive fuzzy control for uncertain nonlinear systems with prescribed performance. IEEE Trans. Fuzzy Syst. (2020)

  30. Chang, X.: Robust nonfragile \({H_\infty }\) Filtering of fuzzy systems with linear fractional parametric uncertainties. IEEE Trans. Fuzzy Syst. 20(6), 1001–1011 (2012)

    Google Scholar 

  31. Precup, R., Tomescu, M.L., Preitl, S., Petriu, E.M., Fodor, J., Pozna, C.: Stability analysis and design of a class of MIMO fuzzy control systems. J. Intell. Fuzzy Syst. 25(1), 145–155 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xie, X., Yang, D., Ma, H.: Observer design of discrete-time T-S fuzzy systems via multi-instant homogenous matrix polynomials. IEEE Trans. Fuzzy Syst. 22(6), 1714–1719 (2014)

    Article  Google Scholar 

  33. Li, H., Gao, Y., Shi, P., Lam, H.: Observer-based fault detection for nonlinear systems with sensor fault and limited communication capacity. IEEE Trans. Automat. Control 61(9), 2745–2751 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xie, X., Yue, D., Peng, C.: Multi-instant observer design of discrete-time fuzzy systems: a ranking-based switching approach. IEEE Trans. Fuzzy Syst. 25(5), 1281–1292 (2017)

    Article  Google Scholar 

  35. Xie, X., Yue, D., Zhang, H., Peng, C.: Control synthesis of discrete-time T-S fuzzy systems: reducing the conservatism whilst alleviating the computational burden. IEEE Trans. Syst. Man Cybernet. 47(9), 2480–2491 (2017)

    Google Scholar 

  36. Zhao, T., Dian, S.: Fuzzy dynamic output feedback \({H_\infty }\) control for continuous-time T–S fuzzy systems under imperfect premise matching. ISA Trans. 70, 248–259 (2017)

    Article  Google Scholar 

  37. Wang, X.-L., Yang, G.-H.: \({H_\infty }\) filtering for TS fuzzy systems with multiple time-varying delays: an improved delays-dependent region partitioning method. Inform. Sci. 481, 368–380 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, H.O., Tanaka, K., Griffin, M.: An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans. Fuzzy Syst. 4(1), 14–23 (1996)

    Article  Google Scholar 

  39. Lam, H.K., Leung, F.H.: Stability analysis of fuzzy control systems subject to uncertain grades of membership. IEEE Trans. Syst. Man Cybernet. Part B 35(6), 1322–1325 (2005)

    Article  Google Scholar 

  40. Chang, X., Yang, G.: Relaxed stabilization conditions for continuous-time Takagi–Sugeno fuzzy control systems. Inform. Sci. 180(17), 3273–3287 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kchaou, M.: Robust \({H_\infty }\) observer-based control for a class of (TS) fuzzy descriptor systems with time-varying delay. Int. J. Fuzzy Syst. 19(3), 909–924 (2017)

    Article  MathSciNet  Google Scholar 

  42. Wei, Y., Qiu, J., Shi, P., Lam, H.: A new design of \({H_\infty }\) piecewise filtering for discrete-time nonlinear time-varying delay systems via T–S fuzzy affine models. IEEE Trans. Syst. Man Cybernet. 47(8), 2034–2047 (2017)

    Article  Google Scholar 

  43. El Younsi, L., Benzaouia, A., El Hajjaji, A.: Decentralized control design for switching fuzzy large-scale T–S systems by switched Lyapunov function with \({ H_\infty }\) performance. Int. J. Fuzzy Syst. 21(4), 1104–1116 (2019)

    Article  MathSciNet  Google Scholar 

  44. Dong, J., Wang, Y., Yang, G.H.: Control synthesis of continuous-time TS fuzzy systems with local nonlinear models. IEEE Trans. Syst. Man Cybernet. Part B 39(5), 1245–1258 (2009)

    Article  Google Scholar 

  45. Wu, Y., Dong, J., Li, T.: Sensor fault estimation in finite-frequency domain for nonlinear time-delayed systems by T–S fuzzy model approach with local nonlinear models. Int. J. Syst. Sci. 50(11), 2226–2247 (2019)

    Article  MathSciNet  Google Scholar 

  46. Liang, H., Liu, G., Zhang, H., Huang, T.: Neural-network-based event-triggered adaptive control of nonaffine nonlinear multiagent systems with dynamic uncertainties. IEEE Trans. Neural Netw. Learn. Syst., (2020)

  47. Su, H., Zhang, W.: Observer-based adaptive fuzzy fault-tolerant control for nonlinear systems using small-gain approach. Int. J. Fuzzy Syst. 21(3), 685–699 (2019)

    Article  MathSciNet  Google Scholar 

  48. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Iequality Approach. Wiley, New York (2004)

    Google Scholar 

  49. Zhou, M., Wang, Z., Shen, Y.: Simultaneous fault estimation and fault-tolerant tracking control for uncertain nonlinear discrete-time systems. Int. J. Syst. Sci. 48(7), 1367–1379 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wu, H., Liu, Z., Guo, L.: Robust \({L_ \infty }\)-gain fuzzy disturbance observer-based control design with adaptive bounding for a hypersonic vehicle. IEEE Trans. Fuzzy Syst. 22(6), 1401–1412 (2014)

    Article  Google Scholar 

  51. Wu, Y., Dong, J.: Simultaneous local stabilisation and fault detection for continuous-time TS fuzzy systems. IET Control Theory Appl. 13(8), 1071–1083 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wu, Y., Dong, J., Li, T.: A peak-to-peak filtering for continuous Takagi–Sugeno fuzzy systems by a local method.Fuzzy Sets Syst., (2020), https://doi.org/10.1016/j.fss.2020.02.008

  53. Tseng, C.-S., Hwang, C.-K.: Fuzzy observer-based fuzzy control design for nonlinear systems with persistent bounded disturbances. Fuzzy Sets Syst. 158(2), 164–179 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wu, H., Qiang, X., Guo, L.: \({L_\infty }\)-gain adaptive fuzzy fault accommodation control design for nonlinear time-delay systems. IEEE Trans. Syst. Man Cybernet. Part B 41(3), 817–827 (2011)

    Article  Google Scholar 

  55. Wu, Y., Dong, J.: Local stabilization of continuous-time TS fuzzy systems with partly measurable premise variables and time-varying delay. IEEE Trans. Syst. Man Cybernet., (2018), https://doi.org/10.1109/TSMC.2018.2871100

  56. Tabarraie, M.: Robust \({L_\infty }\)-induced deconvolution filtering for linear stochastic systems and its application to fault reconstruction. Signal Process. 93(5), 1379–1391 (2013)

    Article  Google Scholar 

  57. Qiu, J., Feng, G., Gao, H.: Static-output-feedback \({H_\infty }\) control of continuous-time T–S fuzzy affine systems via piecewise Lyapunov functions. IEEE Trans. Fuzzy Syst. 21(2), 245–261 (2013)

    Article  Google Scholar 

  58. Marx, B., Koenig, D., Ragot, J.: Design of observers for Takagi–Sugeno descriptor systems with unknown inputs and application to fault diagnosis. IET Control Theory Appl. 1(5), 1487–1495 (2007)

    Article  MathSciNet  Google Scholar 

  59. Koenig, D., Mammar, S.: Design of proportional-integral observer for unknown input descriptor systems. IEEE Trans. Automat. Control 47(12), 2057–2062 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  60. Chadli, M., Karimi, H.R.: Robust observer design for unknown inputs Takagi–Sugeno models. IEEE Trans. Fuzzy Syst. 21(1), 158–164 (2013)

    Article  Google Scholar 

  61. Han, W., Wang, Z., Shen, Y.: \({H\_/L_\infty }\) fault detection observer for linear parameter-varying systems with parametric uncertainty. Int. J. Robust Nonlinear Control 2, 2912–2926 (2019)

    Article  MATH  Google Scholar 

  62. Dong, J., Wang, Y., Yang, G.H.: Output feedback fuzzy controller design with local nonlinear feedback laws for discrete-time nonlinear systems. IEEE Trans. Syst. Man Cybernet. Part B 40(6), 1447–1459 (2010)

    Article  Google Scholar 

  63. Jia, Q., Chen, W., Zhang, Y., Li, H.: Fault reconstruction and fault-tolerant control via learning observers in Takagi–Sugeno fuzzy descriptor systems with time delays. IEEE Trans. Indust. Electron. 62(6), 3885–3895 (2015)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (under Grant Nos. 51939001, 62003069, 61976033, U1813203, 61751202, 61773187); the Science and Technology Innovation Funds of Dalian (under Grant No. 2018J11CY022); the LiaoNing Revitalization Talents Program (under Grant Nos. XLYC1908018); the Natural Foundation Guidance Plan Project of Liaoning (2019-ZD-0151); the Fundamental Research Funds for the Central Universities (under Grant Nos. 3132020126, 3132019345); the Science and Technology Development Fund, Macau SAR (File no. SKL-IOTSC-2018-2020, 0018/2019/AKP); the Natural Science Foundation of Liaoning Province under Grant 20170540098.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieshan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, T., Wu, Y. et al. \({L_\infty }\) Fault Estimation and Fault-Tolerant Control for Nonlinear Systems by T–S Fuzzy Model Method with Local Nonlinear Models. Int. J. Fuzzy Syst. 23, 1714–1727 (2021). https://doi.org/10.1007/s40815-021-01061-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01061-6

Keywords

Navigation