Skip to main content
Log in

Observer-Based Adaptive Fuzzy Event-Triggered Path Following Control of Marine Surface Vessel

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, the path following control scheme of a fully actuated marine surface vessel under the condition of model uncertainties and unmeasurable states is developed. Firstly, an adaptive fuzzy state observer is designed to estimate the unmeasurable states of the vessel. To guarantee the robustness of the system, a kind of sliding mode intermediate variable with the improved approaching law is constructed to eliminate the chattering effect and the vessel can obtain a better control performance. By combining with the relative threshold event-triggered strategy, the controllers only update when the triggering conditions are met. Hence, the update frequency of controllers and the loss of actuators are enormously decreased in contrast with the fixed threshold event-triggered control law. Theoretical analysis proves that the tracking error can converge into a compact set, meanwhile the Zeno behavior is avoided. Simulation results and comparative analysis indicate the availability and superiority of the designed controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xu, H., Fossen, T.I., Soares, C.G.: Uniformly semiglobally exponential stability of vector field guidance law and autopilot for path following. Eur. J. Control 2020(53), 88–97 (2020)

    MathSciNet  MATH  Google Scholar 

  2. Zheng, Z., Xie, L.: Finite-time path following control for a stratospheric airship with input saturation and error constraint. Int. J. Control 92(2), 368–393 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Nie, J., Lin, X.: FAILOS guidance law based adaptive fuzzy finite-time path following control for underactuated MSV. Ocean Eng. 195, 1–13 (2020)

    Google Scholar 

  4. Liu, L., Wang, D., Peng, Z., et al.: Bounded neural network control for target tracking of underactuated autonomous surface vehicles in the presence of uncertain target dynamics . IEEE Trans. Neural Netw. Learning Syst. 30(4), 1241–1249 (2019)

    MathSciNet  Google Scholar 

  5. Peng, Z., Wang, D., Li, T., et al.: Output-feedback cooperative formation maneuvering of autonomous surface vehicles with connectivity preservation and collision avoidance. IEEE Trans. Cybern. 50(6), 2527–2535 (2020)

    Google Scholar 

  6. Liu, L., Wang, D., Peng, Z., et al.: Cooperative path following ring-networked under-actuated autonomous surface vehicles: algorithms and experimental results. IEEE Trans. Cybern. 50(4), 1519–1529 (2020)

    Google Scholar 

  7. Rout, R., Cui, R., Han, Z.: Modified line-of-sight guidance law with adaptive neural network control of underactuated marine vehicles with state and input constraints. IEEE Trans. Control Syst. Technol. 28(5), 1902–1914 (2020)

    Google Scholar 

  8. Fossen, T.I., Pettersen, K.Y.: On uniform semiglobal exponential stability (USGES) of proportional line-of-sight guidance laws. Automatica 11(50), 2912–2917 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Breivik, M., Fossen, T.I.: Path following for marine surface vessels[C]. Oceans MTTS/IEEE Techno-Ocean 4, 2282–2289 (2004)

    Google Scholar 

  10. Breivik, M., Fossen, T.I.: Principles of guidance-based path following in 2D and 3D. 44th IEEE Conference on Decision Control, pp. 627–634 (2005)

  11. Do, K.D., Jiang, Z., Pan, J.: Robust adaptive path following of underactuated ships. Automatica 40(6), 929–944 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Behal, A., Dawson, D.M., Dixon, W.E., et al.: Tracking and regulation control of an underactuated surface vessel with nonintegrable dynamics. IEEE Trans. Autom. Control 47(3), 495–500 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Incremona, G., Rubagotti, M., Ferrara, A.: Sliding mode control of constrained nonlinear systems. IEEE Trans. Autom. Control 62(6), 2965–2972 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Li, T., Zhao, R., Chen, C., et al.: Finite-time formation control of under-actuated ships using nonlinear sliding mode control. IEEE Trans. Cybern. 48(11), 3243–3253 (2018)

    Google Scholar 

  15. Ismail, Z., Mokhar, M., Putranti, V., et al.: A robust dynamic region-based control scheme for an autonomous underwater vehicle. Ocean Eng. 111, 155–165 (2016)

    Google Scholar 

  16. Xu, J., Wang, M., Qiao, L.: Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles. Ocean Eng. 105, 54–63 (2015)

    Google Scholar 

  17. Soylu, S., Buckham, B.J., Podhorodeski, R.P.: A chattering-free sliding-mode controller for underwater vehicles with fault-tolerant infinity-norm thrust allocation. Ocean Eng. 35(16), 1647–1659 (2008)

    Google Scholar 

  18. Zhang, M., Chu, Z.: Adaptive sliding mode control based on local recurrent neural networks for underwater robot. Ocean Eng. 45, 56–62 (2012)

    Google Scholar 

  19. Do, K.D., Pan, J.: State- and output-feedback robust path-following controllers for underactuated ships using Serret-Frenet frame. Ocean Eng. 31(5), 587–613 (2004)

    Google Scholar 

  20. Wang, H., Wang, D., Peng, Z.: Neural network based adaptive dynamic surface control for cooperative path following of marine surface vehicles via state and output feedback. Neurocomputing 133, 170–178 (2014)

    Google Scholar 

  21. Du, J., Yang, Y., Guo, C., et al.: Output feedback control for dynamic positioning system of a ship based on a high gain observer. Control Theory Appl. 30(11), 1486–1491 (2013)

    Google Scholar 

  22. Peng, C., Sun, H.: Switching-like event-triggered control for networked control systems under malicious denial of service attacks. IEEE Trans. Autom. Control 65(9), 3943–3949 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Zhang, K., Zhou, B., Duan, G.: Event-triggered and self-triggered control of discrete-time systems with input constraints. IEEE Trans. Syst. Man Cybern. https://doi.org/10.1109/TSMC.2020.3035037

  24. Wang, T., Ma, M., Qiu, J., et al.: Event-triggered adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with multiple constraints. IEEE Trans. Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2020.2979668

  25. Peng, C., Wu, M., Xie, X., et al.: Event-triggered predictive control for networked nonlinear systems with imperfect premise matching. IEEE Trans. Fuzzy Syst. 26(5), 2797–2806 (2018)

    Google Scholar 

  26. Yoo, S.J., Park, B.S.: Guaranteed-connectivity-based distributed robust event-triggered tracking of multiple underactuated surface vessels with uncertain nonlinear dynamics. Nonlinear Dyn. 1, 1–17 (2020)

    Google Scholar 

  27. Wang, R., Si, C., Ma, H., et al.: Global event-triggered inner-outer loop stabilization of under-actuated surface vessels. Ocean Eng. 218, 1–11 (2020)

    Google Scholar 

  28. Jiao, J., Wang, G.: Event triggered trajectory tracking control approach for fully actuated surface vessel. Neurocomputing 182, 267–273 (2016)

    Google Scholar 

  29. Qin, Q.: Formation Control for Marine Surface Vessels Based on Rigid Structure[D]. Dalian Maritime University, Dalian (2017)

    Google Scholar 

  30. Li, M., Li, T., Gao, X., et al.: Adaptive NN event-triggered control for path following of underactuated vessels with finite-time convergence. Neurocomputing 379, 203–213 (2020)

    Google Scholar 

  31. Ma, J.: Research on Formation Control of Autonomous Surface Vehicle [D]. Harbin Engineering University, Harbin (2018)

    Google Scholar 

  32. Long, Y.J.H., Park, Ye, D.: Asynchronous fault detection and isolation for Markov jump systems with actuator failures under networked environment. IEEE Trans. Syst. Man Cybern. Syst. (2019) https://doi.org/10.1109/TSMC.2019.2930995

  33. Shao, J., Shi, L., Cheng, Y., et al.: Asynchronous tracking control of leader-follower multiagent systems with input uncertainties over switching signed digraphs . IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.3044627

    Article  Google Scholar 

  34. Pettersen, K., Egeland, O.: Exponential stabilization of an underactuated surface vessel. Proceedings of 35th Conference of Decision Control, Kobe, Japan, pp. 967–971 (1997)

  35. Sun, W., Lin, J., Su, S., et al.: Reduced adaptive fuzzy decoupling control for lower limb exoskeleton. IEEE Trans. Cybern. https://doi.org/10.1109/TCYB.2020.2972582

  36. Sun, W., Su, S., Wu, Y., et al.: A novel adaptive fuzzy control for output constrained stochastic non-strict feedback nonlinear systems. IEEE Trans. Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2020.2969909.

  37. Ma, M., Wang, T., Qiu, J., et al.: Adaptive fuzzy decentralized tracking control for large-scale interconnected nonlinear networked control systems. IEEE Trans. Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2020.3009727.

  38. Tong, S., Li, Y.: Robust adaptive fuzzy backstepping output feedback tracking control for nonlinear system with dynamic uncertainties. Sci. China Inf. Sci. 53(2), 307–324 (2010)

    MathSciNet  Google Scholar 

  39. Tang, X., Zhai, D., Fu, Z., et al.: Output feedback adaptive fuzzy control for uncertain Fractional-order nonlinear switched system with output quantization. Int. J. Fuzzy Syst. 22(3), 943–955 (2020)

    Google Scholar 

  40. Wang, W., Liang, H., Pan, Y., et al.: Prescribed performance adaptive fuzzy containment control for nonlinear multiagent systems using disturbance observer. IEEE Trans. Cybern. 50(9), 3879–3891 (2020)

    Google Scholar 

  41. Sun, W., Lv, X.: Practical finite-time fuzzy control for Hamiltonian systems via adaptive event-triggered approach. Int. J. Fuzzy Syst. 22(1), 35–45 (2020)

    Google Scholar 

  42. Wang, T., Tong, S.: Observer-based fuzzy adaptive optimal stabilization control for completely unknown nonlinear interconnected systems. Neurocomputing 313, 415–425 (2018)

    Google Scholar 

  43. Tong, S., Li, Y.: Observer-based adaptive fuzzy backstepping control of uncertain nonlinear pure-feedback systems. Sci. China Inf. Sci. 57(1), 1–14 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Ding, L., Li, S., Gao, H., et al.: Adaptive partial reinforcement learning neural network-based tracking control for wheeled mobile robotic systems. IEEE Trans. Syst. Man Cybern. 50(7), 2512–2523 (2020)

    Google Scholar 

  45. Bai, W., Li, T., Tong, S.: NN reinforcement learning adaptive control for a class of nonstrict-feedback discrete-time systems. IEEE Trans. Cybern. 50(11), 4573–4584 (2020)

    Google Scholar 

  46. Bai, W., Zhou, Q., Li, T., et al.: Adaptive reinforcement learning neural network control for uncertain nonlinear system with input saturation. IEEE Trans. Cybern. 50(8), 3433–3443 (2020)

    Google Scholar 

  47. Ding, S., Wang, Z., Rong, N.: Intermittent control for quasi synchronization of delayed discrete-time neural networks. IEEE Trans. Cybern. https://doi.org/10.1109/TCYB.2020.3004894.

  48. Wu, Y., Dong, J.: Local stabilization of continuous-time TS fuzzy systems with partly measurable premise variables and time-varying delay. IEEE Trans. Syst. Man Cybern. 51(1), 326–338 (2021)

    Google Scholar 

  49. Zhan, J.: Research an application of sliding mode controller based on improved saturation function[D]. Wuhan University of Science and Technology, Wuhan (2019)

    Google Scholar 

  50. Xing, L., Wen, C., Liu, Z., et al.: Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 62(4), 2071–2076 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Ren, B., San, P.P., Ge, S.S., et al.: Adaptive dynamic surface control for a class of strict-feedback nonlinear systems with unknown backlash-like hysteresis. American Control Conference, pp. 4482–4487 (2009)

  52. Wang, N., Tong, S., Li, Y.: Observer-based adaptive fuzzy dynamic surface control of non-linear non-strict feedback system. IET Control Theory Appl. 11(17), 3115–3121 (2017)

    MathSciNet  Google Scholar 

  53. Li, B., Xia, J., Zhang, H., et al.: Event-triggered adaptive fuzzy tracking control for nonlinear systems. Int. J. Fuzzy Syst. 22(5), 1389–1399 (2020)

    Google Scholar 

  54. Zhang, K., Zhou, B., Jiang, H.: Parametric Lyapunov equation based event-triggered and self-triggered control of input constrained linear systems. Int. J. Robust Nonlinear Control 30(16), 6606–6626 (2020)

    MathSciNet  Google Scholar 

  55. Sun, N., Liang, D., Wu, Y., et al.: Adaptive control for pneumatic artificial muscle systems with parametric uncertainties and unidirectional input constraints. IEEE Trans. Industr. Inf. 16(2), 969–979 (2019)

    Google Scholar 

  56. Yang, T., Sun, N., Chen, H., et al.: Neural network-based adaptive antiswing control of an underactuated ship-mounted crane with roll motions and input dead zones. IEEE Trans. Neural Netw. Learn. Syst. 31(3), 901–914 (2019)

    MathSciNet  Google Scholar 

  57. Li, J.: Observer-based formation control for marine surface vessel. Dalian Maritime University, Dalian (2019)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (under Grant Nos. 51939001, 61976033, 61773187, 61903092); the Liaoning Revitalization Talents Program (under Grant Nos. XLYC1908018); the Science and Technology Innovation Funds of Dalian (under Grant No. 2018J11CY022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Long.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Long, Y., Li, T. et al. Observer-Based Adaptive Fuzzy Event-Triggered Path Following Control of Marine Surface Vessel. Int. J. Fuzzy Syst. 23, 2021–2036 (2021). https://doi.org/10.1007/s40815-021-01065-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01065-2

Keywords

Navigation