Skip to main content
Log in

Bootstrap Testing of Central Tendency Nullity Over Paired Fuzzy Samples

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Let us have a population of objects that are subjected to a given event. Each object can be assigned a degree of membership to the population. Assume that for a set of objects, a continuous parameter is measured before and after the given event. We can now form two paired fuzzy samples from the population—Z1 and Z2. We then measure the change ΔZ of Z from Z2 to Z1 and form the fuzzy sample of change Z3. Our aim is to explore if the event has caused statistically significant change ΔZ of Z for that Population. Therefore, we conduct statistical tests for nullity of the central tendencies (mean, median) of change over paired fuzzy samples. We develop two Bootstrap based simulation algorithms to identify the pvalue of such tests for the mean of change and for the median of change. Each of the algorithms has eight modifications depending on: (a) whether the synthetic fuzzy samples were generated using ‘quasi-equal-information generation’ (i.e. synthetic fuzzy samples with almost equal amount of information as the original ones) or using ‘equal-size generation’ (i.e. synthetic fuzzy samples with the same size of fuzzy observations as the original ones); (b) whether the approximated sample cumulative distribution functions (CDF) for the synthetic samples generation are empirical (ECDF), or fuzzy empirical (FECDF); (c) whether we perform a one-tail or two-tail test. We demonstrate the consistency of the developed fuzzy Bootstrap nullity tests on two numerical examples where the central tendencies of change are known. We also present a medical case study, where we compare the proposed techniques with an alternative one that utilizes crisp tests. In that case study, we demonstrate the advantages of fuzzy Bootstrap nullity tests in comparison to standard crisp methods over central tendencies. In our discussions, we outline that to declare significance of change, we focus on a whole cluster of tests over fuzzy paired samples as opposed to relying on individual test results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Vaiphei, K., Kochhar, R., Bhardawaj, S., Dutta, U., Singh, K.: High prevalence of human papillomavirus in esophageal squamous cell carcinoma: a study in paired samples. Dis. Esophagus 26(3), 282–287 (2013)

    Google Scholar 

  2. Knight, S., Yau, C., Clifford, R., Timbs, A., Sadighi Akha, E., Dreau, H., Burns, A., Ciria, C., Oscier, D., Pettitt, A., Dutton, S., Holmes, C., Taylor, J., Cazier, J., Schuh, A.: Quantification of subclonal distributions of recurrent genomic aberrations in paired pre-treatment and relapse samples from patients with B-cell chronic lymphocytic leukemia. Leukemia 26, 1564–1575 (2012). https://doi.org/10.1038/leu.2012.13

    Article  Google Scholar 

  3. Zhang, X., Li, X., Jing, Y., Fang, X., Zhang, X., Lei, B., Yu, Y.: Transplacental transfer of polycyclic aromatic hydrocarbons in paired samples of maternal serum, umbilical cord serum, and placenta in Shanghai, China. Environ. Pollut. 222, 267–275 (2017)

    Google Scholar 

  4. Stamboulis, Y., Barlas, A.: Entrepreneurship education impact on student attitudes. Int. J. Manag. Educ. 12, 365–373 (2014)

    Google Scholar 

  5. Vermetten, Y., Vermunt, J., Lodewijks, H.G.: A longitudinal perspective on learning strategies in higher education—different view points towards development. Br. J. Educ. Psychol. 69(2), 221–242 (1999)

    Google Scholar 

  6. Bradley, J.C., Waliszek, T.M., Zajicek, J.M.: Relationship between environmental knowledge and environmental attitude of high school students. J. Environ. Educ. 30(3), 17–21 (1999)

    Google Scholar 

  7. Amsteus, M.: Colors in marketing: s atudy of color associations and context (in) dependence. Int. J. Bus. Soc. Sci. 6(3), 32–45 (2015)

    Google Scholar 

  8. Mattern, J., Neighbors, C.: Social norms campaigns: examining the relationship between changes in perceived norms and changes in drinking levels. J. Stud. Alcohol 65(4), 489–493 (2004)

    Google Scholar 

  9. Ross, A., Willson, V.L.: Paired samples t-test, In: Ross, A. (Ed.) Basic and Advanced Statistical Tests, pp. 17–19. Brill-Sense (2017)

  10. Derrick, B., Tohen, D., White, P.: How to compare the means of two samples that include paired observations and independent observations: a companion to Derrick, Russ, Toher and White (2017). Quant. Methods Psychol. 13(2), 120–126 (2017)

    Google Scholar 

  11. Rietveld, T., van Hout, R.: The paired t test and beyond: Recommendations for testing the central tendencies of two paired samples in research on speech, language and hearing pathology. J. Commun. Disord. 69, 44–57 (2017)

    Google Scholar 

  12. Rietveld, T., van Hout, R.: The t test and beyond: recommendations for testing the central tendencies of two independent samples in research on speech, language and hearing pathology. J. Commun. Disord. 58, 158–168 (2015)

    Google Scholar 

  13. Zimmerman, D.W.: Teacher’s corner: a note on interpretation of the paired-samples t test. J. Educ. Behav. Stat. 22(3), 349–360 (1997)

    Google Scholar 

  14. Abadie, A., Imbens, G.W.: Notes and comments: matching on the estimated propensity score. Econometrica 84(2), 781–807 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Rosenbaum, P., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70(1), 41–55 (1983)

    MathSciNet  MATH  Google Scholar 

  16. VanderWeele, T.J., Shpitser, I.: On the definition of a confounder. Ann. Stat. 41(1), 196–220 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Austin, P.C.: A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Stat. Med. 27, 2037–2049 (2008)

    MathSciNet  Google Scholar 

  18. Austin, P.C.: Comparing paired vs non-paired statistical methods of analyses when making inferences about absolute risk reductions in propensity-score matched samples. Stat. Med. 30(11), 1292–1301 (2011)

    MathSciNet  Google Scholar 

  19. Viertl, R.: Statistical methods for fuzzy data. Wiley, New York (2011)

    MATH  Google Scholar 

  20. Kratschmer, V.: Probability theory in fuzzy sample spaces. Metrika 60, 167–189 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Nikolova, N., Ivanova, S., Chin, C., Tenekedjiev, K.: Calculation of the Kolmogorov-Smirnov and Kuiper statistics over fuzzy samples. Proc. Jangjeon Math. Soc. 20(2), 269–311 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Nikolova, N., Panayotov, P., Panayotova, D., Ivanova, S., Tenekedjiev, K.: Using fuzzy sets in surgical treatment selection and homogenizing stratification of patients with significant chronic ischemic mitral regurgitation. Int. J. Comput. Intell. Syst. 12(2), 1075–1090 (2019)

    Google Scholar 

  23. Denoeux, Th.: Maximum likelihood estimation from fuzzy data using the EM algorithm. Fuzzy Sets Syst. 183, 72–91 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Gil, M., López-Díaz, M., Ralescu, D.: Overview on the development of fuzzy random variables. Fuzzy Sets Syst. 157(19), 2546–2557 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic—Theory and Applications, pp. 19–29 & 61–75 & 50 & 44–49. Prentice Hall (1995)

  26. Viertl, R.: Univariate statistical analysis with fuzzy data. Comput. Stat. Data Anal. 51(1), 133–147 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Klir, G.: Foundations of fuzzy set theory and fuzzy logic: a historical overview. Int. J. Gen. Syst. 30(2), 91–131 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Szmidt, E., Kacprzyk, J.: Probability of intuitionistic fuzzy events and their application in decision making. In: EUSFLAT-ESTYLF Joint Conference, 22–25 September, Palma De Majorca, Spain, pp. 457–460 (1999)

  29. Tenekedjiev, K., Nikolova, N.: Ranking discrete outcome alternatives with partially quantified uncertainty. Int. J. Gen. Syst. 37(2), 249–274 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Viertl, R.: Testing hypotheses with fuzzy data: the fuzzy p-value. Metrika 59(1), 21–29 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Coppi, R., Gil, M., Kiers, H.: The fuzzy approach to statistical analysis. Comput. Stat. Data Anal. 51(1), 1–14 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Hryniewicz, O., Kaczmarek, K., Nowak, P.: Bayes statistical decisions with random fuzzy data—an application for the Weibull distribution. Maint. Reliab. 17(4), 610–616 (2015). https://doi.org/10.17531/ein.2015.4.18

    Article  Google Scholar 

  33. Nikolova, N., Chai, S., Ivanova, S.D., Kolev, K., Tenekedjiev, K.: Bootstrap Kuiper testing of the identity of 1D continuous distributions using fuzzy samples. Int. J. Comput. Intell. Syst. 8(2), 63–75 (2015)

    Google Scholar 

  34. Politis, D.: Computer-intensive intensive methods in statistical analysis. IEEE Signal Process. Mag. 15(1), 39–55 (1998)

    Google Scholar 

  35. Nikolova, N.D., Toneva-Zheynova, D., Kolev, K., Tenekedjiev, K.: Monte Carlo statistical tests for identity of theoretical and empirical distributions of experimental data, In: Computer and Information Science: Theory and Application of Monte Carlo Simulations, Chan, W. (ed.), pp. 1–26. INTECH Open Science (2013)

  36. Press, W.H., Teukolski, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes—The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  37. Nikolova, N, Mihaylova, N, Tenekedjiev, K.: Bootstrap tests for mean value differences over fuzzy samples. In: Proceedings of the 16th IFAC Conference on Technology, Culture and International Stability, 24–27 September, pp. 7–14. Sozopol, Bulgaria (2015)

  38. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman and Hall, New York (1993)

    MATH  Google Scholar 

  39. Wooldridge, K.J., Wadud, M., Lye, J., Joyeux, R.: Introductory econometrics, 2nd Asia-Pacific edition, pp. 11–285. Cengage Australia and NZ (2021)

  40. Martinez, L., Liu, J., Yang, J.-B.: A fuzzy model for design evaluation based on multiple criteria analysis in engineering systems. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 14(3), 317–336 (2006)

    Google Scholar 

  41. Andrade, R.A.E., Fernández, E., González, E.: Compensatory fuzzy logic: a frame for reasoning and modeling preference knowledge in intelligent systems. In: Espin, R., Pérez, R., Cobo, A., Marx, J., Valdés, A. (eds.) Soft Computing for Business Intelligence. Studies in Computational Intelligence, vol. 537, pp. 3–23. Springer, Berlin (2004)

    Google Scholar 

  42. Kruse, R., Schwecke, E., Hensohn, J.: Uncertainty and Vagueness in Knowledge Based Systems: Numerical Methods, Chapter 3: Vague data, pp. 29–44. Springer (1991),

  43. Cover, T.M., Thomas, J.A.: Elements of Information Theory, pp. 57–58. Wiley, New York (2006)

    MATH  Google Scholar 

  44. Lawless, J.F.: Statistical Models and Methods for Lifetime Data, 2nd edn. Wiley, Hoboken (2003)

    MATH  Google Scholar 

  45. Hesterberg, T.: Bootstrap, WIREs. Comput. Stat. 3, 497–526 (2011)

    Google Scholar 

  46. Xie, M., Singh, K.: Confidence distribution, the frequentist distribution estimator of a parameter: a review. Int. Stat. Rev. 81(1), 3–39 (2013)

    MathSciNet  MATH  Google Scholar 

  47. Badiwala, M.V., Verma, S., Rao, V.: Surgical management of ischemic mitral regurgitation. Circulation 120, 1287–1293 (2009)

    Google Scholar 

  48. Panayotov, P.: Contemporary methods for diagnosis and surgical treatment of significant chronic ischemic mitral regurgitation, extended abstract of PhD thesis, Medical University-Varna (2013) http://mu-varna.bg/BG/Research/Documents/Doktor/panayotov24.10/avtoreferat_9_EN.pdf), pp. 7–18

  49. Panayotov, P., Panayotova, D., Nikolova, N., Donchev, N., Ivanova, S., Mircheva, L., Petrov, V., Tenekedjiev, K.: Algorithms for formal stratification of patients with ischemic mitral regurgitation. Scripta Scientifica Medica 50(4), 30–35 (2018)

    Google Scholar 

  50. Waring, A., Litwin, S.: Redefining reverse remodeling: can echocardiography refine our ability to assess response to heart failure treatments? J. Am. Coll. Cardiol. 68(12), 1277–1280 (2016)

    Google Scholar 

  51. Kreyszig, E.: Introductory Mathematical Statistics, p. 206. Wiley, New York (1970)

    MATH  Google Scholar 

  52. MATLAB R2019a and Statistics and Machine Learning Toolbox 11.5. The MathWorks, Inc., Natick, Massachusetts (2019)

  53. Selvanathan, S.A., Selvanathan, S., Keller, G.: Business statistics: Australia New Zealand, 7th edn, pp. 495–498. Cengage Learning Australia (2017)

  54. Gibbons, J.D., Chakraborti, S.: Nonparametric Statistical Inference, 5th edn. Chapman & Hall/CRC Press, Taylor & Francis Group, Boca Raton (2011)

    MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Spanish Ministry of Economy and Competitiveness through the Spanish National Research Project PGC2018-099402-B-I00 and the Postdoctoral Fellowship Ramón y Cajal (RYC-2017-21978).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Nikolova.

Appendix

Appendix

Assume we have the fuzzy sample Y of n observations, along with their degrees of membership to the underlying Population, as follows:

$$ Y = \left\{ {y_{1} - \mu_{1} {,}y_{2} - \mu_{2} {,} \ldots {,}y_{n} - \mu_{n} } \right\}{\text{, for}}\;i = {1, 2,} \ldots {,}n $$
(25)

Assume we sort the measurements in Y in ascending order and obtain the fuzzy sample X:

$$ X = \left\{ {x_{1} - \mu_{1} {,}x_{2} - \mu_{2} {,} \ldots {,}x_{n} - \mu_{n} } \right\}{,}\;{\text{where}}\;x_{1} \le x_{2} \le ... \le x_{n} {,}\;{\text{for}}\;i = {1, 2,} \ldots {,}n $$
(26)

Now we can calculate the median of the sorted fuzzy sample X as follows:

Step 1 Define a real function q(.) as in (27) with domain \(p \in \left[ {0;1} \right]\), and nodes as in (28):

$$ q\left( p \right) = \left\{ {\begin{array}{*{20}l} {q_{i} } \hfill & {{\text{for }}p = p_{i} } \hfill \\ {q_{i} + \frac{{\left( {q_{i + 1} - q_{i} } \right)\left( {p - p_{i} } \right)}}{{\left( {p_{i + 1} - p_{i} } \right)}}} \hfill & {{\text{for }}p_{i} < p < p_{i + 1} } \hfill \\ \end{array} } \right. $$
(27)
$$ \left( {p_{i} ,q_{i} } \right) = \left\{ {\begin{array}{*{20}l} {\left( {0,x_{1} } \right)} \hfill & {{\text{for }}i = 0} \hfill \\ {\left( {\frac{{\mu_{1} }}{2},x_{1} } \right)} \hfill & {{\text{for }}i = 1} \hfill \\ {\left( {\sum\limits_{j = 1}^{i - 1} {\mu_{j} + \frac{{\mu_{i} }}{2},x_{i} } } \right)} \hfill & {{\text{for }}i = 2,3, \ldots ,n} \hfill \\ {\left( {1,x_{n} } \right)} \hfill & {{\text{for }}i = n + 1} \hfill \\ \end{array} } \right. $$
(28)

The function (27) is an assessment of the p-quantile of the variable whose representatives are in Y.

Step 2 The median of the fuzzy sample Y is

$$ MED = q\left( {0.{5}} \right) $$
(29)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenekedjiev, K., Nikolova, N., Rodriguez, R.M. et al. Bootstrap Testing of Central Tendency Nullity Over Paired Fuzzy Samples. Int. J. Fuzzy Syst. 23, 1934–1954 (2021). https://doi.org/10.1007/s40815-021-01074-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01074-1

Keywords