Skip to main content

Advertisement

Log in

Multi-constrained Fuzzy Control for Perturbed T–S Fuzzy Singular Systems by Proportional-Plus-Derivative State Feedback Method

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper investigates the design problem of the proportional-plus-derivative state feedback fuzzy controller for the Takagi–Sugeno fuzzy singular systems, which considering the influence of internal perturbations and external noises. To solve the perturbation problem in the control system simply and concisely, the benefit of employing a robust control approach is proposed. Considering the perturbed Takagi–Sugeno fuzzy singular systems with external noises, the Lyapunov stability theory is chosen to derive the stability conditions with passivity constraints. To bring better transient performance for the controlled systems, the decay rate constraint is also adopted. These sufficient stability conditions can be effectively transferred into the linear matrix inequality problem. Finally, an example is used to verify the proposed robust fuzzy controller design method’s applicability and effectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Takagi, T., Takayuki, L., Wang, H.O.: Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Trans. Fuzzy Syst. 6(2), 250–265 (1998)

    Article  Google Scholar 

  2. Yeh, J., Su, S.F.: Efficient approach for RLS type learning in TSK neural fuzzy systems. IEEE Trans. Cybern. 47(9), 2343–2352 (2017)

    Article  Google Scholar 

  3. Chang, W.J., Ku, C.C.: Robust fuzzy control for uncertain stochastic time-delay Takagi-Sugeno fuzzy models for achieving passivity. Fuzzy Sets Syst. 161(15), 2012–2032 (2010)

    Article  MathSciNet  Google Scholar 

  4. Uang, H.J.: On the dissipativity of nonlinear systems: fuzzy control approach. Fuzzy Sets Syst. 156(2), 185–207 (2005)

    Article  MathSciNet  Google Scholar 

  5. Liu, X., Zhang, Q.: Approaches to quadratic stability conditions and H control designs for TS fuzzy systems. IEEE Trans. Fuzzy Syst. 11(6), 830–839 (2003)

    Article  Google Scholar 

  6. Chiang, W.L., Chen, T.W., Liu, M.Y., Hsu, C.J.: Application and robust H control of PDC fuzzy controller for nonlinear systems with external disturbance. J. Mar. Sci. Technol. 9(2), 84–90 (2001)

    Article  Google Scholar 

  7. K. R. Lee, T. J. Eun, and B. P. Hong, “Robust fuzzy H control for uncertain nonlinear systems via state feedback: an LMI approach,” Fuzzy sets and systems, Vol. 120, Vo. 1, pp. 123-134, 2001

  8. Chang, X.H., Liu, Y.: Robust H filtering for vehicle sideslip angle with quantization and data dropouts. IEEE Trans. Veh. Technol. 69(10), 10435–10445 (2020)

    Article  Google Scholar 

  9. Chang, X.H., Yang, G.: Nonfragile H filter design for T-S fuzzy systems in standard form. IEEE Trans. Industr. Electron. 61(7), 3448–3458 (2014)

    Article  Google Scholar 

  10. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York (2001)

    Book  Google Scholar 

  11. Chang, W.J., Hsu, F.L.: Sliding mode fuzzy control for Takagi-Sugeno fuzzy systems with bilinear consequent part subject to multiple constraints. Inf. Sci. 327, 258–271 (2016)

    Article  MathSciNet  Google Scholar 

  12. Rongchang, L., Yang, Y.: Fault detection for TS fuzzy singular systems via integral sliding modes. J. Franklin Inst. 357(17), 13125–13143 (2020)

    Article  MathSciNet  Google Scholar 

  13. Zhenghong, J., Zhang, Q., Ren, J.: The approximation of the T-S fuzzy model for a class of nonlinear singular systems with impulses. Neural Comput. Appl. 32(14), 10387–10401 (2020)

    Article  Google Scholar 

  14. Lu, G., Ho, D.W.C.: Generalized quadratic stability for continuous-time singular systems with nonlinear perturbation. IEEE Trans. Autom. Control 51(5), 818–823 (2006)

    Article  MathSciNet  Google Scholar 

  15. Huang, C.P.: Stability analysis of discrete singular fuzzy systems. Fuzzy Sets Syst. 151(1), 155–165 (2005)

    Article  MathSciNet  Google Scholar 

  16. Xu, S., Song, B., Lu, J., Lam, J.: Robust stability of uncertain discrete-time singular fuzzy systems. Fuzzy Sets Syst. 158(20), 2306–2316 (2007)

    Article  MathSciNet  Google Scholar 

  17. Liu, P., Yang, W.T., Yang, C.E.: Robust observer-based output feedback control for fuzzy descriptor systems. Expert Syst. Appl. 40(11), 4503–4510 (2013)

    Article  MathSciNet  Google Scholar 

  18. Huang, C.P.: Stability analysis and controller synthesis for fuzzy descriptor systems. Int. J. Syst. Sci. 44(1), 23–33 (2013)

    Article  MathSciNet  Google Scholar 

  19. Ren, J., Zhang, Q.: Simultaneous robust normalization and delay-dependent robust H stabilization for singular time-delay systems with uncertainties in the derivative matrices. Int. J. Robust Nonlinear Control 25(18), 3528–3545 (2015)

    Article  MathSciNet  Google Scholar 

  20. Ding, Y., Weng, F.: Robust decentralized stabilization of large-scale singular systems via proportional-plus-derivative state feedback. Int. Conf. Adv. Comput. Theory Eng. (ICACTE) 4, 320–324 (2010)

    Google Scholar 

  21. Kwon, W., Kang, D., Park J., Won, S.: Decentralized guaranteed cost control for uncertain large-scale singular systems via proportional-plus-derivative state feedback. Asian Control Conference (ASCC), pp. 1-6, 2015

  22. Lozano, R., Brogliato, B., Egeland, O., Maschke, B.: Dissipative Systems Analysis and Control Theory and Application. Springer, London (2000)

    MATH  Google Scholar 

  23. Chang, W.J., Chang, Y.C., Ku, C.C.: Passive fuzzy control via fuzzy integral Lyapunov function for nonlinear ship drum-boiler systems. ASME 137(4), 15 (2015)

    Google Scholar 

  24. Chang, W.J., Chen, P.H., Ku, C.C.: Mixed sliding mode fuzzy control for discrete-time nonlinear stochastic systems subject to variance and passivity constraints. IET Control Theory Appl. 9(16), 2369–2376 (2015)

    Article  MathSciNet  Google Scholar 

  25. Chang, W.J., Chen, P.H., Ku, C.C.: Variance and passivity constrained sliding mode fuzzy control for continuous stochastic nonlinear systems. Neurocomputing 201, 29–39 (2016)

    Article  Google Scholar 

  26. Li, Q., Zhang, Q., Yi, N., Yuan, Y.: Robust passive control for uncertain time-delay singular systems. IEEE Trans. Circuits Syst. I Regul. Pap. 56(3), 653–663 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Sun, Y.G., Xu, J.Q., Chen, C., Lin, G.B.: Fuzzy H robust control for magnetic levitation system of maglev vehicles based on TS fuzzy model: design and experiments. J. Intell. Fuzzy Syst. 36(2), 911–922 (2019)

    Article  Google Scholar 

  28. Xu, J., Fang, H., Zhou, T., Chen, Y.H., Guo, H., Zeng, F.: Optimal robust position control with input shaping for flexible solar array drive system: a fuzzy-set theoretic approach. IEEE Trans. Fuzzy Syst. 27(9), 1807–1817 (2019)

    Article  Google Scholar 

  29. Nguyen, N.T.: Lyapunov Stability Theory. Springer, Cham (2018)

    Book  Google Scholar 

  30. Mu, Y., Zhang, H., Sun, S., Ren, J.: Robust non-fragile proportional plus derivative state feedback control for a class of uncertain Takagi-Sugeno fuzzy singular systems. J. Franklin Inst. 356(12), 6208–6225 (2019)

    Article  MathSciNet  Google Scholar 

  31. Mu, Y., Zhang, H., Sun, J., Ren, J.: Proportional plus derivative state feedback controller design for a class of fuzzy descriptor systems. Int. J. Syst. Sci. 50(12), 2249–2260 (2019)

    Article  MathSciNet  Google Scholar 

  32. Zhang, G., Xia, J., Zhang, B., Sun, W.: Robust normalisation and P-D state feedback control for uncertain singular Markovian jump systems with time-varying delays. IET Control Theory Appl. 12(3), 419–427 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Council of the Republic of China under Contract MOST109-2221-E-019-049. It was also supported by the University System of Taipei Joint Research Program under Contract USTP-NTUT-NTOU-109-03.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Jer Chang or Kuang-Yow Lian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, WJ., Lian, KY., Su, CL. et al. Multi-constrained Fuzzy Control for Perturbed T–S Fuzzy Singular Systems by Proportional-Plus-Derivative State Feedback Method. Int. J. Fuzzy Syst. 23, 1972–1985 (2021). https://doi.org/10.1007/s40815-021-01096-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01096-9

Keywords

Navigation