Skip to main content
Log in

Cooperative-Game-Oriented Optimal Design in Vehicle Lateral Stability Control with Fuzzy Uncertainties

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Robustness is a major concern when engineers design lateral stability controllers for intelligent vehicles. The system uncertainty derives from the internal parametric perturbation and the external disturbance. The fuzzy set theory is adopted to describe the bound of the uncertainty. Hence the vehicle lateral dynamical system becomes a fuzzy dynamical system. An explicit robust optimal control law is then proposed to ensure the uniform boundedness and uniform ultimate boundedness of the system. The control law is deterministic and is not IF-THEN fuzzy rule based. A two-player cooperative game is established to determine the optimal value of tunable parameters. The cost functions of the players are developed based on the system performance and the control cost. The Pareto optimal is then obtained using the cooperative game theory. The effectiveness of the proposed method is proven by numerical simulations and Hardware-in-the-loop (HIL) experiments. This paper makes a breakthrough by casting the cooperative game theory and the fuzzy set theory into vehicle lateral stability control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Moradi-Pari, E., Mahjoub, H., Kazemi, H., et al.: Utilizing model-based communication and control for cooperative automated vehicle applications. IEEE Trans. Intell. Veh. 2(1), 38–51 (2017)

    Article  Google Scholar 

  2. Li, S., Yang, Y., Li, K., et al.: Dynamical modeling and distributed control of connected and automated vehicles: challenges and opportunities. IEEE Trans. Intell. Transp. Syst. 9(3), 46–58 (2017)

    MathSciNet  Google Scholar 

  3. Attia, R., Orjuela, R., Basset, M.: Combined longitudinal and lateral control for automated vehicle guidance. Veh. Syst. Dynam. 52(2), 261–279 (2014)

    Article  Google Scholar 

  4. Wei, S., Zou, Y., Zhang, X., et al.: An integrated longitudinal and lateral vehicle following control system with radar and vehicle-to-vehicle communication. IEEE Trans. Veh. Tech. 68(2), 1116–1127 (2019)

    Article  Google Scholar 

  5. Nahidi, A., Kasaiezadeh, A., Khosravani, S., et al.: Modular integrated longitudinal and lateral vehicle stability control for electric vehicles. Mechatronics 44, 60–70 (2017)

    Article  Google Scholar 

  6. Zhang, L., Wang, Y., Wang, Z.: Robust lateral motion control for in-wheel-motor-drive electric vehicles with network induced delays. IEEE Trans. Veh. Tech. 68(11), 10585–10593 (2019)

    Article  Google Scholar 

  7. Song, Y., Chen, H., Li, D.: Virtual-point-based fault-tolerant lateral and longitudinal control of 4W-steering vehicles. IEEE Trans. Intell. Transp. Syst. 12(4), 1343–1351 (2011)

    Article  MathSciNet  Google Scholar 

  8. Han, G., Fu, W., Wang, W., et al.: The lateral tracking control for the intelligent vehicle based on adaptive PID neural network. Sensors 17(6), 1244–1258 (2017)

    Article  Google Scholar 

  9. Wang, R., Sun, Y., Lin, M., et al.: Research on bus roll stability control based on LQR. In: 2015 International Conference Intelligent Transportation, Vietnam, pp. 622–625 (2015)

  10. Shi, K., Yuan, X., Huang, G., et al.: DLMPCS-based improved yaw stability control strategy for DDEV. IET Intell. Trans. Syst. 13(9), 1329–1339 (2019)

    Article  Google Scholar 

  11. Wu, H., Li, Y.: Coordination Control of Path Tracking and Stability for 4WS Autonomous Vehicle. In: 2020 International Conference Electromechanical Control Technology Transporation, China, pp. 343–348 (2020)

  12. Chen, C., Jia, Y., Shu, M., et al.: Hierarchical adaptive path tracking control for autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 16(5), 2900–2912 (2015)

    Article  Google Scholar 

  13. Wang, F., Chen, H., Guo, K.H., et al.: A novel integrated approach for path following and directional stability control of road vehicles after a tire blow-out. Mech. Syst. Signal Process. 93, 431–444 (2017)

    Article  Google Scholar 

  14. Ji, Xuewu, He, Xiangkun, Lv, Chen, et al.: A vehicle stability control strategy with adaptive neural network sliding mode theory based on system uncertainty approximation. Veh. Syst. Dyn 56(6), 923–946 (2018)

    Article  Google Scholar 

  15. Zhang, H., Wang, J.: Vehicle lateral dynamics control through AFS/DYC and robust gain-scheduling approach. IEEE Trans. Veh. Technol. 65(1), 489–494 (2016)

    Article  Google Scholar 

  16. Zhao, W., Qin, X., Wang, C.: Yaw and lateral stability control for four-wheel steer-by-wire system. IEEE/ASME Trans. Mechatron. 23(6), 2628–2637 (2018)

    Article  Google Scholar 

  17. Lee, S., Chung, C.: Predictive control with sliding mode for autonomous driving vehicle lateral maneuvering. American Control Conference, pp. 2998–3003 (2017)

  18. Cheng, S., Li, L., Liu, C., et al.: Robust LMI-based H-infinite controller integrating AFS and DYC of autonomous vehicles with parametric uncertainties. IEEE Trans. Syst. Man Cybern. Syst. (2020). http://https://doi.org/10.1109/TSMC.2020.2964282

  19. Zhang, H., Zhao, W.: Stability control strategy of steer-by-wire system based on LQG/LTR. Sci. China Technol. Sci. 60(6), 844–853 (2017)

    Article  Google Scholar 

  20. Lee, K., Jeon, S., Kim, H., et al.: Optimal path tracking control of autonomous vehicle: adaptive full-state linear quadratic gaussian (LQG) control. IEEE Access 7, 109120–109133 (2019)

    Article  Google Scholar 

  21. Kalman, R.E.: Probability in the real world as a system attribute. Quart. Cent. Wiskd. Inform. 9, 181–203 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Pincus, S., Kalman, R.E.: Not all (possibly) random sequences are created equal. Proc. Natl. Acad. Sci. 94(8), 3513–3518 (1997)

    Article  MathSciNet  Google Scholar 

  23. Krishna, S., Narayanan, S., Denis, A.S.: Fuzzy logic based yaw stability control for active front steering of a vehicle. J. Mech. Sci. Technol. 28(12), 5169–5174 (2014)

    Article  Google Scholar 

  24. Jin, X., Yu, Z., Yin, G., et al.: Improving vehicle handling stability based on combined AFS and DYC system via robust Takagi-Sugeno fuzzy control. IEEE Trans. Intell. Transp. Syst. 19(8), 2696–2707 (2018)

    Article  Google Scholar 

  25. Hu, X., Wu, L., Hu, C., et al.: Dynamic output feedback control of a flexible air-breathing hypersonic vehicle via T-S fuzzy approach. Int. J. Syst. Sci. 45(8), 1740–1756 (2014)

    Article  MathSciNet  Google Scholar 

  26. Geng, C., Mostefai, L., Denai, M., et al.: Direct yaw-moment control of an in-wheel-motored electric vehicle based on body slip angle fuzzy observer. IEEE Trans. Ind. Electron. 56(5), 1411–1419 (2009)

    Article  Google Scholar 

  27. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

  28. Zimmermann, H.J.: Fuzzy Set Theory and Its Applications. Springer Science & Business Media, Berlin (2011)

    Google Scholar 

  29. Hu, C., Wang, R., Yan, F., et al.: Differential steering based yaw stabilization using ISMC for independently actuated electric vehicles. IEEE Trans. Intell. Transp. Syste. 19(2), 627–638 (2018)

    Article  Google Scholar 

  30. Huang, D., Zhai, J., Ai, W., et al.: Disturbance observer-based robust control for trajectory tracking of wheeled mobile robots. Neurocomputing 198, 74–79 (2016)

    Article  Google Scholar 

  31. Ji, X., He, X., Lv, C., et al.: A vehicle stability control strategy with adaptive neural network sliding mode theory based on system uncertainty approximation. Veh. Syst. Dyn. (2018). https://doi.org/10.1080/00423114.2017.1401100

  32. Ji, X., Liu, Y., Yang, K., et al.: Interactive control paradigm-based robust lateral stability controller design for autonomous automobile path tracking with uncertain disturbance: a dynamic game approach. IEEE Trans. Veh. Technol. 67(8), 6906–6920 (2018)

    Article  Google Scholar 

  33. Xu, J., Du, Y., Chen, Y.H., et al.: Optimal robust control design for constrained uncertain systems: a fuzzy-set theoretic approach. IEEE Trans. Fuzzy Syst. 26(6), 3494–3505 (2018)

    Article  Google Scholar 

  34. Danielsen, L.E., Parker, M.G., Sole, P.: The Rayleigh Quotient of Bent Functions. Springer, Berlin (1985)

    MATH  Google Scholar 

  35. Chen, Y.H.: A new approach to the control design of fuzzy dynamical systems. J. Dyn. Syst. Meas. Control 45(5), 1527–1542 (1987)

    Google Scholar 

  36. Mariano, J., Amelia, B.: Pareto-Optimal Solutions in Fuzzy Multi-Objective Linear Programming. Elsevier, North-Holland (2009)

    MATH  Google Scholar 

  37. Hale, J.K.: Ordinary Differential Equations. Dover Publications, New York (2009)

    Google Scholar 

  38. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, England (1985)

    Book  Google Scholar 

Download references

Acknowledgements

This research is sponsored in part by the NSFC Program (No. 61872217, No. U1701262, No. U1801263), the research is also sponsored in part by the Guangdong Provincial Key Laboratory of Cyber-Physical Systems, as well as be sponsored in part by the Industrial Internet innovation and development project of ministry of industry and information technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Huang.

Appendix: Derivative Cost Functions Using D Operator

Appendix: Derivative Cost Functions Using D Operator

As mentioned in Sect. 4, the cost function should be deterministic to formulate the cooperative game. Therefore, we introduce the D operator to form the mapping from fuzzy set to real number.

Definition 2

Consider a fuzzy set

$$\begin{aligned} \begin{aligned} N=\left\{ (\xi ,\mu _{\Xi }(\xi )|\xi \in \Xi \right\} . \end{aligned} \end{aligned}$$
(77)

For any function \(f:\Xi \rightarrow {\mathbb {R}}\), the D operation \(D[f(\xi )]\) is given by

$$\begin{aligned} \begin{aligned} D[f(\xi )]=\dfrac{\int _\Xi f(\xi )\mu _\Xi (\xi )\text {d}\xi }{\int _\Xi \mu _\Xi (\xi )\text {d}\xi }. \end{aligned} \end{aligned}$$
(78)

According to definition 2, the D operator can be viewed as a defuzzification method and has the follow properties

$$\begin{aligned} \begin{array}{lcl} D[cf(\xi )]=cD[f(\xi )] &{} &{} \text {for any crisp constant } c\in {\mathbb {R}},\\ D[f(\xi )]=f(\xi ) &{} &{} \text {if } \mu _\Xi (\xi )=1, \text { for\,all } \xi \in \Xi . \end{array} \end{aligned}$$
(79)

The transient state and steady state system performance can be derived as follows

$$\begin{aligned} \begin{aligned} \eta _t&=\int _{t_0}^{+\infty } \eta _1^2(\gamma ,\epsilon ,t)\text {d}t\\&=\big ( V_0^2-2\kappa h(\gamma ,\epsilon )V_0\rho ^{-\frac{1}{\epsilon -1}}\delta ^{\frac{\epsilon }{\epsilon -1}}\\&\quad +\kappa ^2h^2(\gamma ,\epsilon )(\rho ^2)^{-\frac{1}{\epsilon -1}}(\delta ^2)^{\frac{\epsilon }{\epsilon -1}}\big ) \frac{\kappa }{2},\\ \eta _s&=\eta _2^2(\gamma ,\epsilon )=\kappa ^2h^2(\gamma ,\epsilon )(\rho ^2)^{-\frac{1}{\epsilon -1}}(\delta ^2)^{\frac{\epsilon }{\epsilon -1}}. \end{aligned} \end{aligned}$$
(80)

Based on Eqs. (77)–(80), we now propose the explicit cost functions for the two-player cooperative game

$$\begin{aligned} \begin{aligned} J_\gamma (\gamma ,\epsilon )&=\frac{\kappa }{2}D[V_0^2]-\kappa ^2 h(\gamma ,\epsilon )D[V_0]D[\rho ]^{-\frac{1}{\epsilon -1}}D[\delta ]^{\frac{\epsilon }{\epsilon -1}}\\&+\frac{\kappa ^3}{2}h^2(\gamma ,\epsilon )D[\rho ^2]^{-\frac{1}{\epsilon -1}}D[\delta ^2]^{\frac{\epsilon }{\epsilon -1}}+\gamma ^2,\\ J_\epsilon (\gamma ,\epsilon )&=\kappa ^2h^2(\gamma ,\epsilon )D[\rho ^2]^{-\frac{1}{\epsilon -1}}D[\delta ^2]^{\frac{\epsilon }{\epsilon -1}}+\epsilon ^2.\\ \end{aligned} \end{aligned}$$
(81)

We denote

$$\begin{aligned} \begin{matrix} \alpha _1=\dfrac{\kappa }{2}D[V(t_0)^2]&{}&{} \alpha _2=\kappa ^2D[V(t_0)]D[\delta ] &{}&{} \alpha _3=\dfrac{D[\delta ]}{D[\rho ]} \\ \alpha _4=\dfrac{\kappa ^3}{2}D[\delta ^2]&{}&{} \alpha _5=\dfrac{D[\delta ^2]}{D[\rho ^2]}&{}&{} \alpha _6=\kappa ^2D[\delta ^2]. \end{matrix} \end{aligned}$$
(82)

Then we have

$$\begin{aligned} \begin{aligned} J_\gamma (\gamma ,\epsilon )&=\alpha _1-\alpha _2h(\gamma ,\epsilon )\alpha _3^{\frac{1}{\epsilon -1}}+\alpha _4h^2(\gamma ,\epsilon )\alpha _5^{\frac{1}{\epsilon -1}}+\gamma ^2,\\ J_\epsilon (\gamma ,\epsilon )&=\alpha _5h^2(\gamma ,\epsilon )\alpha _6^{\frac{1}{\epsilon -1}}+\epsilon ^2. \end{aligned} \end{aligned}$$
(83)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Huang, J., Yan, Z. et al. Cooperative-Game-Oriented Optimal Design in Vehicle Lateral Stability Control with Fuzzy Uncertainties. Int. J. Fuzzy Syst. 24, 867–882 (2022). https://doi.org/10.1007/s40815-021-01160-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01160-4

Keywords

Navigation