Skip to main content
Log in

A Leader–Follower Sequential Game Approach to Optimizing Parameters for Intelligent Vehicle Formation Control

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

A vehicle formation control algorithm is presented to deal with the ineluctable uncertainty and guarantee the vehicle platoon Lyapunov stability (uniform boundedness, uniform ultimate boundedness, and string stability). The uncertainty here is nonlinear, possibly fast time-varying, and is assumed to be within the confines of a known set. Most important of all, the control parameters are optimized to achieve better performances. A Pareto optimal approach is employed to solve such an optimal problem. In the optimal procedure, the control parameters are considered as players and their corresponding value ranges are regarded as the decision sets. The cost function of any player includes three parts: the state cost portion, the time cost portion, and the control cost portion. The optimal parameters minimize the cost functions. The resulting vehicle formation control with optimal parameters impels the vehicle platoon both Lyapunov stability and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Petrov, P., Nashashibi, F.: Modeling and nonlinear adaptive control for autonomous vehicle overtaking. IEEE Trans. Intell. Transp. Syst. 15(4), 1643–1656 (2014)

    Article  Google Scholar 

  2. Huang, J., Huang, Q., Deng, Y., Chen, Y.H.: Toward robust vehicle platooning with bounded spacing error. IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 36(4), 562–572 (2017)

    Article  Google Scholar 

  3. Huang, Z., Chu, D., Wu, C., He, Y.: Path planning and cooperative control for automated vehicle platoon using hybrid automata. IEEE Trans. Intell. Transp. Syst. 20(3), 959–974 (2019)

    Article  Google Scholar 

  4. Levine, W.S., Athans, M.: On the optimal error regulation of a string of moving vehicles. IEEE Trans. Autom. Control 11(3), 355–361 (1966)

    Article  Google Scholar 

  5. Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

    Article  Google Scholar 

  6. Stilwell, D.J., Bishop, B.E., Sylvester, C.A.: Redundant manipulator techniques for partially decentralized path planning and control of a platoon of autonomous vehicles. IEEE Trans. Syst. Man Cybern. B 35(4), 842–848 (2005)

    Article  Google Scholar 

  7. Liu, P., Kurt, A., Ozguner, U.: Synthesis of a behavior-guided controller for lead vehicles in automated vehicle convoys. Mechatronics 50, 366–376 (2018)

    Article  Google Scholar 

  8. Dong, L., Chen, Y., Qu, X.: Formation control strategy for nonholonomic intelligent vehicles based on virtual structure and consensus approach. Proc. Eng. 137, 415–424 (2016)

    Article  Google Scholar 

  9. Sun, Z., Xia, Y.: Receding horizon tracking control of unicycle-type robots based on virtual structure: Receding horizon tracking control of unicycle-type robots. Int. J. Robust Nonlinear Control 26(17), 3900–3918 (2016)

    Article  MATH  Google Scholar 

  10. Zhang, L., Sun, J., Yang, Q.: Distributed model-based event-triggered leader–follower consensus control for linear continuous-time multiagent systems. IEEE Trans. Syst. Man Cybern. 51, 6457–6465 (2020). https://doi.org/10.1109/TSMC.2019.2962735

    Article  Google Scholar 

  11. Zhang, D., Shen, Y., Zhou, S.: Distributed secure platoon control of connected vehicles subject to dos attack: Theory and application. IEEE Trans. Syst. Man Cybern. 81, 1–10 (2020). https://doi.org/10.1109/TSMC.2020.2968606

    Article  Google Scholar 

  12. Wang, P.K.C.: Navigation strategies for multiple autonomous mobile robots. J. Robot. Syst. 8(2), 177–195 (1991)

    Article  MATH  Google Scholar 

  13. Fernandes, P., Nunes, U.: Multiplatooning leaders positioning and cooperative behavior algorithms of communicant automated vehicles for high traffic capacity. IEEE Trans. Intell. Transp. Syst. 16(3), 1172–1187 (2015)

    Article  Google Scholar 

  14. Guo, J., Luo, Y., Li, K.: Adaptive coordinated leader–follower control of autonomous over-actuated electric vehicles. Trans. Inst. Meas. Control. 50(5), 1416–1423 (2014)

    Google Scholar 

  15. Li, S.E., Gao, F., Li, K., Wang, L.-Y., You, K., Cao, D.: Robust longitudinal control of multi-vehicle systems: A distributed H-infinity method. IEEE Trans. Intell. Transp. Syst. 19(9), 2779–2788 (2018)

    Article  Google Scholar 

  16. Huang, Y., Shi, P., Wu, Z., Qian, J., Chambers, J.A.: Robust Kalman filters based on Gaussian scale mixture distributions with application to target tracking. IEEE Trans. Syst. Man Cybern. 49(10), 2082–2096 (2019)

    Article  Google Scholar 

  17. Suzuki, H., Nakatsuji, T.: Dynamic estimation of headway distance in vehicle platoon system under unexpected car-following situations. Transp. Res. Proc. 6, 172–188 (2015)

    Google Scholar 

  18. Liu, J., Cai, B.G., Wang, J.: Cooperative localization of connected vehicles: Integrating GNSS with DSRC using a robust cubature Kalman filter. IEEE Trans. Intell. Transp. Syst. 18(8), 2111–2125 (2017)

    Article  Google Scholar 

  19. Kolhe, J.P., Shaheed, M., Chandar, T.S., Talole, S.E.: Robust control of robot manipulators based on uncertainty and disturbance estimation. Int. J. Robust Nonlinear Control 23(1), 104–122 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kalman, R.E.: Randomness reexamined. MIC: Model. Identif. Control 15(3), 141–151 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  22. Tong, S., Li, Y.: Fuzzy adaptive control design strategy of nonlinear switched large-scale systems. IEEE Trans. Syst. Man Cybern. 48(12), 2209–2218 (2018)

    Article  Google Scholar 

  23. Latrech, C., Chaibet, A., Boukhnifer, M., Glaser, S.: Integrated longitudinal and lateral networked control system design for vehicle platooning. Sensors 18(9), 1 (2018)

    Article  Google Scholar 

  24. Xiao, S., Dong, J.: Distributed adaptive fuzzy fault-tolerant containment control for heterogeneous nonlinear multiagent systems. IEEE Trans. Syst. Man Cybern. 93, 1–12 (2020). https://doi.org/10.1109/TSMC.2020.3002944

    Article  Google Scholar 

  25. Liang, B., Zheng, S., Ahn, C.K.: Adaptive fuzzy control for fractional-order interconnected systems with unknown control directions. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.3031694

    Article  Google Scholar 

  26. Hao, S., Xue, H., Pan, Y.: Adaptive fuzzy dual-performance fault-tolerant control for interconnected nonlinear systems. Int. J. Adapt. Control Signal Process. (2021). https://doi.org/10.1002/acs.3284

    Article  MathSciNet  Google Scholar 

  27. Cui, Y., Liu, X., Deng, X.: Composite adaptive fuzzy decentralized tracking control for pure-feedback interconnected large-scale nonlinear systems. Neural Comput. Appl. 33, 8735–8751 (2021)

    Article  Google Scholar 

  28. Chen, Y.H.: A new approach to the control design of fuzzy dynamical systems. J. Dyn. Syst. Meas. Control 133(6), 061019-1-061019–9 (2011)

    Article  Google Scholar 

  29. Yu, R., Chen, Y.H., Han, B., Zhao, H.: A hierarchical control design framework for fuzzy mechanical systems with high-order uncertainty bound. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2965913

    Article  Google Scholar 

  30. Dong, F., Zhao, X., Han, J., Chen, Y.H.: An optimal fuzzy adaptive control for uncertain flexible joint manipulator based on D-operation. IET Control Theory Appl. 12(9), 1286–1298 (2018)

    Article  MathSciNet  Google Scholar 

  31. Xu, J., Du, Y., Chen, Y.H., Guo, H.: Optimal robust control design for constrained uncertain systems: A fuzzy-set theoretic approach. IEEE Trans. Fuzzy Syst. 26(6), 3494–3505 (2018)

    Article  Google Scholar 

  32. Zhao, X., Chen, Y.H., Dong, F., Zhao, H.: Controlling uncertain swarm mechanical systems: A \(\beta \)-measure based approach. IEEE Trans. Fuzzy Syst. 27(6), 1272–1285 (2019)

    Article  Google Scholar 

  33. Xu, J., Du, Y., Chen, Y.H., Guo, H.: Bivariate optimization for control design of interconnected uncertain nonlinear systems: A fuzzy set-theoretic approach. Int. J. Fuzzy Syst. 20(6), 1715–1729 (2018)

    Article  MathSciNet  Google Scholar 

  34. Xu, J., Fang, H., Zhou, T., Chen, Y.H., Guo, H., Zeng, F.: Optimal robust position control with input shaping for flexible solar array drive system: A fuzzy-set theoretic approach. IEEE Trans. Fuzzy Syst. 27(9), 1807–1817 (2019)

    Article  Google Scholar 

  35. Yin, H., Chen, Y.H., Yu, D., Lu, H.: Nash-game-oriented optimal design in controlling fuzzy dynamical systems. IEEE Trans. Fuzzy Syst. 27(8), 1659–1673 (2019)

    Article  Google Scholar 

  36. Yin, H., Chen, Y.H., Yu, D.: Fuzzy dynamical system approach for a dual-parameter hybrid-order robust control design. Fuzzy Sets Syst. 392, 136–153 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yin, H., Chen, Y.H., Yu, D.: Rendering optimal design in controlling fuzzy dynamical systems: A cooperative game approach. IEEE Trans. Ind. Inf. 15(8), 4430–4441 (2019)

    Article  Google Scholar 

  38. Zhao, X., Chen, Y.H., Zhao, H.: Control design based on dead-zone and leakage adaptive laws for artificial swarm mechanical systems. Int. J. Control 90(5), 1077–1089 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhao, X., Chen, Y.H., Han, Z.: Robust approximate constraint-following control for autonomous vehicle platoon systems. Asian J. Control 20(4), 1611–1623 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vincent, T., Leitmann, G.: Control-space properties of cooperative games. IEEE Trans. Fuzzy Syst. 6(2), 91–113 (1970)

    MathSciNet  MATH  Google Scholar 

  41. Leitmann, G., Rocklin, S., Vincent, T.: A note on control space properties of cooperative games. J. Optim. Theory Appl. 9(6), 379–390 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, K., Ouyang, Z., Krishnan, R., Shu, L., He, L.: A game theory-based energy management system using price elasticity for smart grids. IEEE Trans. Ind. Inf. 11(6), 1607–1616 (2015)

    Article  Google Scholar 

  43. Li, C., Chen, Y. H., Zhao, H., Sun, H.: Stackelberg game theory-based optimization of high-order robust control for fuzzy dynamical systems. IEEE Trans. Syst. Man Cybern. (2020) https://doi.org/10.1109/TSMC.2020.3018139.

  44. Subramanian, V., Burks, T.F., Arroyo, A.A.: Development of machine vision and laser radar based autonomous vehicle guidance systems for citrus grove navigation. Comput. Electron. Agric. 53(2), 130–143 (2006)

    Article  Google Scholar 

  45. Kang, J., Hindiyeh, R.Y., Moon, S.W., Gerdes, J.C., Yi, K.: Design and testing of a controller for autonomous vehicle path tracking using GPS/INS sensors. J. Aerosp. Eng. 41(2), 2093–2098 (2008)

    Google Scholar 

  46. Wang, H., Wang, B., Liu, B., Meng, X., Yang, G.: Pedestrian recognition and tracking using 3D LiDAR for autonomous vehicle. Robot. Auton. Syst. 88, 71–78 (2016)

    Article  Google Scholar 

  47. Chen, Y.H.: Artificial swarm system: Boundedness, convergence, and control. J. Aerosp. Eng. 21(4), 288–293 (2008)

    Article  Google Scholar 

  48. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  49. Bajodah, A.H., Hodges, D.H., Chen, Y.H.: Inverse dynamics of servo-constraints based on the generalized inverse. Nonlinear Dyn. 39(1), 179–196 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  50. Udwadia, F.E., Wanichanon, T., Cho, H.: Methodology for satellite formation-keeping in the presence of system uncertainties. J. Guid. Control Dyn. 37(5), 1611–1624 (2014)

    Article  Google Scholar 

  51. Udwadia, F.E.: A new approach to stable optimal control of complex nonlinear dynamical systems. J. Appl. Mech. 81(3), S30–S31 (2014)

    Article  Google Scholar 

  52. Yu, R., Zhao, H., Zhen, S., Huang, K., Chen, X., Sun, H., Zhang, K.: A novel trajectory tracking control of AGY based on Udwadia–Kalaba approach. IEEE/CAA J. Automatica Sinica 99, 1–13 (2016)

    Google Scholar 

  53. Corless, M.J., Leitmann, G.: Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Trans. Autom. Control 26(5), 1139–1144 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  54. Swaroop, D., Hedrick, J.K.: String stability of interconnected systems. IEEE Trans. Automat. Control 41(3), 1806–1810 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  55. Chen, Y.H.: Performance analysis of controlled uncertain systems. Dyn. Control 6(2), 131–142 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China [Grant No. 51905140], Fundamental Research Funds for Chinese Central Universities (Grant No. PA2020GDSK0090, JZ2020YYPY0107), and China Fundamental Research Funds for Chinese Central Universities (Grant No. 300102259306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangfang Dong.

Appendix

Appendix

Membership function: A function that the values assigned to the elements of the universal set fall within a specified range and indicate the membership grade of these elements in the set in question is called membership function.

\(\alpha \)-cut and strong \(\alpha \)-cut: For a given fuzzy set \(\Omega \) defined on X and any number \(\alpha \in [0,1]\), the \(\alpha \)-cut of fuzzy set \(\Omega \) is defined as \( ^{\alpha }\Omega =\{x \mid \mu _{\Omega }(x)\ge \alpha \}\), the strong \(\alpha \)-cut of fuzzy set \(\Omega \) is defined as \( ^{\alpha +}{\Omega } =\{x \mid \mu _{\Omega }(x)> \alpha \}\).

Fuzzy number: To qualify as a fuzzy number, a fuzzy set \(\Omega \) must possess the following properties: (i) \(\Omega \) is a normal fuzzy set; (ii) \(\Omega \) is convex; (iii) the support of \(\Omega \) must be bounded; (iv) for each \(\alpha \in (0, 1]\), \( ^{\alpha }{\Omega } \) is a closed interval in \(\mathbf{R}\).

Arithmetic Operations: Let \(\Omega _1\), \(\Omega _2\) denote two fuzzy numbers, and \( *^{\alpha }{\Omega }{_1}=[a_1, b_1]\), \( ^{\alpha }{\Omega }{_2}=[a_2, b_2]\), \(a_1<b_1\), \(a_2<b_2\). Then, we have the following operations:

$$\begin{aligned}& ^{\alpha }{(\Omega _1+\Omega _2)} =[a_1+a_2, b_1+b_2], \end{aligned}$$
(75)
$$\begin{aligned}& ^{\alpha }{(\Omega _1-\Omega _2)} =[a_1-b_2, b_1-a_2], \end{aligned}$$
(76)
$$\begin{aligned}& ^{\alpha }{(\Omega _1\cdot \Omega _2)} =[\min (a_1a_2, a_1b_2, b_1a_2, b_1b_2), \nonumber \\&~~~~~~~~~~~~~~~~~\max (a_1a_2, a_1b_2, b_1a_2, b_1b_2) ], \end{aligned}$$
(77)
$$\begin{aligned}& ^{\alpha }{(\Omega _1/ \Omega _2)} =[\min (a_1/a_2, a_1/b_2, b_1/a_2, b_1/b_2), \nonumber \\&~~~~~~~~~~~~~~~~~\max (a_1/a_2, a_1/b_2, b_1/a_2, b_1/b_2)]. \end{aligned}$$
(78)

D-operation For a fuzzy set \({\mathcal {A}}=\{\upsilon , \mu _{N}(\upsilon ) \mid \upsilon \in {A}\}\) and any function \(f(\upsilon ): A\rightarrow {\mathbf{R}}\), the D-operation of \(f(\upsilon )\) is defined as

$$\begin{aligned} {D[f(\upsilon )]}=\frac{\int _{A} f(\upsilon ) \mu _{A}(\upsilon ) d \upsilon }{\int _{A} \mu _{A} (\upsilon ) d \upsilon }. \end{aligned}$$
(79)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Chen, YH., Dong, F. et al. A Leader–Follower Sequential Game Approach to Optimizing Parameters for Intelligent Vehicle Formation Control. Int. J. Fuzzy Syst. 24, 1390–1405 (2022). https://doi.org/10.1007/s40815-021-01196-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-021-01196-6

Keywords

Navigation