Skip to main content

Advertisement

Log in

Dissipative Control for T–S Fuzzy Stochastic Descriptor Biological Economic Systems with Time-Varying Delays

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper addresses the dissipative control problem for a class of stochastic descriptor biological economic systems with time-varying delays. By introducing time-varying delays into the system where the economic profit is variable, a new stochastic descriptor biological economic system with time-varying delays is presented. Considering the nonlinearity of such systems, the fuzzy stochastic models are established via the Takagi–Sugeno (T–S) fuzzy control approach. And then, the T–S fuzzy stochastic models are transformed into the equivalent subsystems by restricted equivalent transformation. Through the subsystems, by using a novel delay-dependent Lyapunov–Krasovskii functional, the new sufficient condition is obtained to enable the considered systems to be mean-square admissible and stochastic strictly dissipative. Furthermore, the fuzzy state feedback controller is designed to ensure the population and price are stable by the regulation control for the biological resource. In the end, simulation examples are given to illustrate the effectiveness of the proposed control design method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Rosenbrock, H.H.: Structural properties of linear dynamical systems. Int. J. Control 20(2), 191–202 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dai, L.: Singular Control Systems. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  3. Liu, C., Zhang, Q., Feng, Y., Yang, C.: Complex dynamics in a harvested differential–algebraic eco-epidemiological model. Int. J. Inf. Syst. Sci. 5(3–4), 311–324 (2009)

    MathSciNet  Google Scholar 

  4. Zhang, S., Zhang, Q., Qiao, L.: Fuzzy optimal guaranteed cost control of a single species model with stage structure in toxic environment. J. Intell. Fuzzy Syst. 33, 2415–2426 (2017)

    Article  MATH  Google Scholar 

  5. Takaba, K., Morihira, N., Katayama, T.: A generalized Lyapunov theorem for descriptor system. Syst. Control Lett. 24(1), 49–51 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Xu, S., Yang, C.: Stabilization of discrete-time descriptor systems: A matrix inequalities approach. Automatica 35(9), 1613–1617 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhao, S., Sun, J., Liu, I.: Finite-time stability of linear time-varying singular systems with impulsive effects. Int. J. Control 81(11), 1824–1829 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wu, Z., Park, J., Su, H., Chu, J.: Admissibility and dissipativity analysis for discrete-time singular systems with mixed time-varying delays. Appl. Math. Comput. 218(13), 7128–7138 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Jin, Z., Zhang, Q., Meng, X.: The impulse analysis of the T–S fuzzy singular system via Kronecker index. Int. J. Syst. Sci. 50(7), 1327–1337 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Luan, X., Liu, F., Shi, P.: Finite-time filtering for non-linear stochastic systems with partially known transition jump rates. Control Theory Appl. IET 4(5), 735–745 (2010)

    Article  MathSciNet  Google Scholar 

  11. Shi, Y., Zhu, P.: Asymptotic stability analysis of stochastic reaction-diffusion Cohen–Grossberg neural networks with mixed time delays. Appl. Math. Comput. 242, 159–167 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Chen, Z.Q., Fukushima, M.: Stochastic Komatu–Loewner evolutions and BMD domain constant. Stoch. Process. Appl. 128(2), 545–594 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Itô, K.: On stochastic differential equations. Am. Math. Soc. 18(3), 491–508 (1951)

    Google Scholar 

  14. Oksendal, B.: Stochastic Differential Equations: An Introduction with Application. Springer, New York (2002)

    Google Scholar 

  15. Mao, X.R., Yuan, C.G.: Stochastic Differential Equations with Markovian Switching. Imperial College Press, London (2006)

    Book  MATH  Google Scholar 

  16. Zhao, F., Yao, H., Chen, X., Cao, J., Qiu, J.: Robust H\(\infty\) sliding mode control for a class of descriptor stochastic nonlinear system. Asian J. Control 21(1), 397–404 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, X., Liu, B.: Singular linear quadratic optimal control problem for stochastic nonregular descriptor systems. Asian J. Control 20(5), 1782–1792 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, J., Zhang, Q.: An integral sliding mode control approach to observer-based stabilization of stochastic It\(\hat{\text{ o }}\) descriptor systems. Neurocomputing 173(3), 1330–1340 (2016)

    Article  Google Scholar 

  19. Talel, B., Faycal, B.H.: Recursive five-step filter for state and fault estimation of linear descriptor stochastic systems with unknown disturbances. J. Circ. Syst. Comput. 27(6), 1850083 (2018)

    Article  Google Scholar 

  20. Vlasenko, L.A., Rutkas, A.G., Semenets, V.V., Chikrii, A.A.: Stochastic optimal control of a descriptor system. Cybern. Syst. Anal. 56(2), 204–212 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Boukas, E.K., Xu, S., Lam, J.: On stability and stabilizability of descriptor stochastic systems with delays. J. Optim. Theory Appl. 127, 249–262 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Long, S., Zhong, S.: Improved results for stochastic stabilization of a class of discrete-time descriptor Markovian jump systems with time-varying delay. Nonlinear Anal. Hybrid Syst. 23, 11–26 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xing, S., Yan, D., Chang, C.: Delay-dependent stability analysis and control for a kind of stochastic descriptor systems with time-varying delays, The 37th Chinese Control Conference, July 25–27. Shenyang, China (2018)

  24. Zhang, Y., Jie, Y., Meng, X.: The modelling and control of a singular biological economic system in a polluted environment. Discrete Dyn. Nat. Soc. 1–7, 16 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Jin, Z., Zhang, Q., Meng, X.: The stability analysis and control of uncertain singular biological economic system with invasion of alien species based on sliding mode control. J. Intell. Fuzzy Syst. 34(6), 4079–4091 (2018)

    Article  Google Scholar 

  26. Zhang, Q., Liu, C., Zhang, X.: Complexity, Analysis and Control of Singular Biological Systems. Springer, London (2012)

    Book  MATH  Google Scholar 

  27. Mekibeb, G.A., Mekonnen, S.A., Hogeveen, H.: Stochastic bio-economic modeling of mastitis in Ethiopian dairy farms. Prev. Vet. Med. 138, 94–103 (2017)

    Article  Google Scholar 

  28. Ali, B.M., Berentsen, P.B.M., Bastiaansen, J.W.M., Lansink, A.O.: A stochastic bio-economic pig farm model to assess the impact of innovations on farm performance. Animal 12(4), 819–830 (2018)

    Article  Google Scholar 

  29. Zhang, Y., Zheng, Y., Liu, X.: Dynamical analysis of a differential algebraic bio-economic model with stage-structured and stochastic fluctuations. Physica A 462, 222–229 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, Y., Li, N., Zhang, J.: Stochastic stability and Hopf bifurcation analysis of a singular bio-economic model with stochastic fluctuations. Int. J. Biomath. 12(8), 1950083 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Han, C., Zeng, Y., Zhang, H., Zhao, Y.: Admissibility analysis for nonlinear singular system with time-delay via T–S fuzzy model. Int. J. Fuzzy Syst. 19(1), 207–214 (2017)

    Article  MathSciNet  Google Scholar 

  32. Chaibi, N., Tissir, E.H.: On robust stability of singular uncertain Takagi–Sugeno fuzzy systems with additive time-varying delays. Int. J. Fuzzy Syst. Adv. Appl. 5, 35–40 (2018)

    Google Scholar 

  33. Lv, X., Fei, J., Sun, Y.: Fuzzy PID controller design for uncertain networked control systems based on T–S fuzzy model with random delays. Int. J. Fuzzy Syst. 21(2), 571–582 (2019)

    Article  MathSciNet  Google Scholar 

  34. Irshad, A., Usman, M., Chaudhry, S.A., Bashir, A.K., Jolfaei, A., Srivastava, G.: Fuzzy-in-the-Loop-Driven low-cost and secure biometric user access to server. IEEE Trans. Reliab. 1–12, 1 (2020)

    Google Scholar 

  35. Wu, J.M., Srivastava, G., Wei, M., Yun, U., Lin, J.C.: Fuzzy high-utility pattern mining in parallel and distributed Hadoop framework. Inf. Sci. 553, 31–48 (2021)

    Article  MathSciNet  Google Scholar 

  36. Xing, S., Zhang, Q., Zhang, Y.: Finite-time stability analysis and control for a class of stochastic descriptor biological economic systems based on T–S Fuzzy model. Abstr. Appl. Anal. 5, 1–10 (2013)

    Google Scholar 

  37. Li, L., Zhang, Q., Zhu, B.: Fuzzy stochastic optimal guaranteed cost control of bio-economic singular Markovian jump systems. IEEE Trans. Cybern. 45(11), 2512–2521 (2015)

    Article  Google Scholar 

  38. Sakthivel, R., Kanagaraj, R., Wang, C., Selvaraj, P., Anthoni, S.M.: Non-fragile sampled-data guaranteed cost control for bio-economic fuzzy singular Markovian jump systems. IET Control Theory Appl. 13(2), 279–287 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhu, B., Zhang, J., Zhang, Q.: Dissipative control for T–S fuzzy descriptor systems with actuator saturation and disturbances. J. Franklin Inst. 353(18), 4950–4978 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang, L., De-kui, G.E., Liu, H.: Dissipative control for the predator–prey system with mixed delays. J. Biomath. 32(2), 168–174 (2017)

    MATH  Google Scholar 

  41. Zhang, J., Liu, D., Ma, Y.: Finite-time dissipative control of uncertain singular T–S fuzzy time-varying delay systems subject to actuator saturation. Comput. Appl. Math. 39, 201 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xing, S. Y., Qiao, Q. S., Zhu, B. Y., Chang, C. L.: Dissipative control for stochastic T–S fuzzy singular systems with time delay. In: Proceedings of the 35th Chinese control conference, pp. 1734–1739 (2016)

  43. Zhang, Y., Shi, P., Ramesh, K.A.: Event-based dissipative analysis for discrete time-delay singular stochastic systems. Int. J. Robust Nonlinear Control 28(18), 6106–6121 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Nagamani, G., Soundararajan, G., Subramaniam, R., Azeem, M.: Robust extended dissipativity analysis for Markovian jump discrete-time delayed stochastic singular neural networks. Neural Comput. Appl. 32, 9699–9712 (2020)

    Article  Google Scholar 

  45. Chen, L.: Essential Mathematical Biology. Science Press, China (1988)

    Google Scholar 

  46. Zhang, W., Zhao, Y., Sheng, L.: Some remarks on stability of stochastic singular systems with state-dependent noise. Automatica 51, 273–277 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xing, S., Zhang, Q., Zhu, B.: Mean-square admissibility for stochastic T–S fuzzy descriptor systems based on extended quadratic Lyapunov function approach. Fuzzy Sets Syst. 307, 99–114 (2016)

    Article  MATH  Google Scholar 

  48. Fridman, E.: Stability of linear descriptor systems with delay: A Lyapunov-based approach. J. Math. Anal. Appl. 273, 24–44 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. Gu, K.Q., Kharitonov, V.L., Chen, J.: Stability of Time-Delay Systems. Brikhaser, Boston (2003)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant Nos. 61803275, 62073144, 61733008, Liao Ning Revitalization Talents Program under Grant XLYC1907044, Natural Science Foundation of Liaoning Province under Grant No. 2020-MS-218, Guangzhou Science and Technology Planning Project Under Grant 202002030389, Scientific Research Project of Liaoning Provincial Department of Education-Science and Engineering Basic Research Project under Grant No.lnjc 202018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangyun Xing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, C., Xing, S., Deng, F. et al. Dissipative Control for T–S Fuzzy Stochastic Descriptor Biological Economic Systems with Time-Varying Delays. Int. J. Fuzzy Syst. 24, 1974–1985 (2022). https://doi.org/10.1007/s40815-022-01253-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01253-8

Keywords