Skip to main content
Log in

Design of Discrete Noniterative Algorithms for Center-of-Sets Type Reduction of General Type-2 Fuzzy Logic Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

According to the alpha-planes expression theory of general type-2 fuzzy sets, this paper completes the center-of-sets (COS) type reduction and defuzzification for general type-2 fuzzy logic systems (GT2 FLSs). In fact, it still remains an open problem by comparing the prevalent Karnik–Mendel (KM) algorithms and other types of alternative noniterative algorithms. The modules of fuzzy inference, COS type reduction, and defuzzification of Mamdani-type GT2 FLSs on the basis of Nagar-Bardini algorithms, Nie-Tan algorithms, and Begian-Melek-Mendel algorithms are also provided. Six simulation examples are provided to illustrate the performances of corresponding noniterative algorithms. In contrast to the KM algorithms, the suggested three types of noniterative algorithms can get faster convergence speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mendel, J.M.: General type-2 fuzzy logic systems made simple: a tutorial. IEEE Trans. Fuzzy Syst. 22(5), 162–1182 (2014)

    Article  Google Scholar 

  2. Wagner, C., Hagras, H.: Slices based general type-2 fuzzy sets and systems. In: Mendel, J.M. (ed.) Advances in Type-2 Fuzzy Sets and Systems: Theory and Applications. Springer, New York (2013)

    MATH  Google Scholar 

  3. Castillo, O., Melin, P.: Type-2 Fuzzy Logic: Theory and Applications. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  4. Azar, A.T.: Overview of type-2 fuzzy logic systems. Int. J. Fuzzy Syst. Appl. 2(4), 1–28 (2012)

    Google Scholar 

  5. Melin, P., Gonzalez, C.I., Castro, J.R., et al.: Edge-detection method for image processing based on generalized type-2 fuzzy logic. IEEE Trans. Fuzzy Syst. 22(6), 1515–1525 (2014)

    Article  Google Scholar 

  6. Gonzalez, C.I., Melin, P., Castro, J.R., et al.: An improved sobel edge detection method based on generalized type-2 fuzzy logic. Soft. Comput. 20(2), 773–784 (2016)

    Article  Google Scholar 

  7. Chen, Y., Wang, D.Z.: Forecasting by designing Mamdani general type-2 fuzzy logic systems optimized with quantum particle swarm optimization algorithms. Trans. Inst. Meas. Control 41(10), 2886–2896 (2019)

    Article  Google Scholar 

  8. Chen, Y., Wang, D.Z., Ning, W.: Forecasting by TSK general type-2 fuzzy logic systems optimized with genetic algorithms. Optim. Control Appl. Methods 39(1), 393–409 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Y., Wang, D.Z.: Forecasting by general type-2 fuzzy logic systems optimized with QPSO algorithms. Int. J. Control Autom. Syst. 15(6), 2950–2958 (2017)

    Article  MathSciNet  Google Scholar 

  10. Castillo, O., Amador-Angulo, L., Castro, J.R., et al.: A comparative study of type-1 fuzzy logic systems, interval type-2 fuzzy logic systems and generalized type-2 fuzzy logic systems in control problems. Inf. Sci. 354(part c), 257–274 (2016)

    Article  Google Scholar 

  11. Sanchez, M.A., Castillo, O., Castro, J.R.: Generalized type-2 fuzzy systems for controlling a mobile robot and a performance comparison with interval type-2 and type-1 fuzzy systems. Expert Syst. Appl. 42(14), 5904–5914 (2015)

    Article  Google Scholar 

  12. Liu, F.: An efficient centroid type reduction strategy for general type-2 fuzzy logic system. Inf. Sci. 178(9), 2224–2236 (2008)

    Article  MathSciNet  Google Scholar 

  13. Mendel, J.M., Liu, F., Zhai, D.: Alpha-plane representation for type-2 fuzzy sets: theory and applications. IEEE Trans. Fuzzy Syst. 17(5), 1189–1207 (2009)

    Article  Google Scholar 

  14. Wagner, C., Hagras, H.: Towards general type-2 fuzzy logic systems based on zSlices. IEEE Trans. Fuzzy Syst. 18(4), 637–660 (2010)

    Article  Google Scholar 

  15. Chen, Y., Wang, D.Z.: Study on centroid type-reduction of general type-2 fuzzy logic systems with weighted Nie-Tan algorithms. Soft. Comput. 22(22), 7659–7678 (2018)

    Article  MATH  Google Scholar 

  16. Chen, Y., Wang, D.Z.: Study on centroid type-reduction of general type-2 fuzzy logic systems with weighted enhanced Karnik-Mendel algorithms. Soft. Comput. 22(4), 1361–1380 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Greenfield, S., Chiclana, F.: Accuracy and complexity evaluation of defuzzification strategies for the discretised interval type-2 fuzzy set. Int. J. Approx. Reason. 54(8), 1013–1033 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ontiveros-Robles, E., Melin, P., Castillo, O.: New methodology to approximate type-reduction based on a continuous root-finding karnik mendel algorithm. Algorithms 10(3), 77–96 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wu, D.R., Mendel, J.M.: Recommendations on designing practical interval type-2 fuzzy logic systems. Eng. Appl. Artif. Intell. 85, 182–193 (2019)

    Article  Google Scholar 

  20. Mendel, J.M.: On KM algorithms for solving type-2 fuzzy set problems. IEEE Trans. Fuzzy Syst. 21(3), 426–446 (2013)

    Article  Google Scholar 

  21. Mendel, J.M., Liu, F.L.: Super-exponential convergence of the Karnik-Mendel algorithms for computing the centroid of an interval type-2 fuzzy set. IEEE Trans. Fuzzy Syst. 15(2), 309–320 (2007)

    Article  Google Scholar 

  22. Liu, X., Mendel, J.M., Wu, D.: Study on enhanced Karnik-Mendel algorithms: initialization explanations and computation improvements. Inf. Sci. 184(1), 75–91 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wu, D., Mendel, J.M.: Enhanced Karnik-Mendel algorithms. IEEE Trans. Fuzzy Syst. 17(4), 923–934 (2009)

    Article  Google Scholar 

  24. Wu, H., Mendel, J.M.: Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 10(5), 622–639 (2002)

    Article  Google Scholar 

  25. Greenfield, S., Chiclana, F., Coupland, S., John, R.: The collapsing method of defuzzification for discretised interval type-2 fuzzy sets. Inf. Sci. 179(13), 2055–2069 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. EI-Nagar, A.M., EI-Bardini, M.: Simplified interval type-2 fuzzy logic system based on new type-reduction. J. Intell. Fuzzy Syst. 27(4), 1999–2010 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen, Y.: Study on weighted Nagar-Bardini algorithms for centroid type-reduction of interval type-2 fuzzy logic systems. Journal of Intelligent & Fuzzy Systems 34(4), 2417–2428 (2018)

    Article  Google Scholar 

  28. Chen, Y.: Study on weighted Nagar-Bardini algorithms for centroid type-reduction of general type-2 fuzzy logic systems. J. Intell. Fuzzy Syst. 37(5), 6527–6544 (2019)

    Article  Google Scholar 

  29. Li, J.W., John, R., Coupland, S., Kendall, G.: On Nie-Tan operator and type-reduction of interval type-2 fuzzy sets. IEEE Trans. Fuzzy Syst. 26(2), 1036–1039 (2018)

    Article  Google Scholar 

  30. Chen, Y.: Study on sampling-based discrete noniterative algorithms for centroid type-reduction of interval type-2 fuzzy logic systems. Soft. Comput. 24(15), 11819–11828 (2020)

    Article  Google Scholar 

  31. Biglarbegian, M., Melek, W.W., Mendel, J.M.: On the stability of interval type-2 TSK fuzzy logic systems. IEEE Trans. Syst. Man Cybern. Part B 40(3), 798–818 (2010)

    Article  Google Scholar 

  32. Biglarbegian, M., Melek, W.W., Mendel, J.M.: On the robustness of type-1 and interval type-2 fuzzy logic systems in modeling. Inf. Sci. 181(7), 1325–1347 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Khanesar, M.A., Jalalian, A., Kaynak, O.: Improving the speed of center of set type-reduction in interval type-2 fuzzy systems by eliminating the need for sorting. IEEE Trans. Fuzzy Syst. 25(5), 1193–1206 (2017)

    Article  Google Scholar 

  34. Aisbett, J., Rickard, J.T., Morgenthaler, D.G.: Type-2 fuzzy sets as functions on spaces. IEEE Trans. Fuzzy Syst. 18(4), 841–844 (2010)

    Article  Google Scholar 

  35. Hu, H., Wang, Y., Cai, Y.: Advantages of the enhanced opposite direction searching algorithm for computing the centroid of an interval type-2 fuzzy set. Asian J. Control 14(6), 1–9 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Khosravi, A., Nahavandi, S.: Effects of type-reduction algorithms on forecasting accuracy of IT2 FLS models. Appl. Soft Comput. 17(3), 32–38 (2014)

    Article  Google Scholar 

  37. Mendel, J.M., Liu, X.W.: Simplified interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 21(6), 1056–1069 (2013)

    Article  Google Scholar 

  38. Coupland, S., John, R.I.: Geometric type-1 and type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 15(1), 3–15 (2007)

    Article  MATH  Google Scholar 

  39. Chen, Y.: Study on sampling based discrete Nie-Tan algorithms for computing the centroids of general type-2 fuzzy sets. IEEE Access 7(1), 156984–156992 (2019)

    Article  Google Scholar 

  40. Moreno, J.E., Sanchez, M.A., Mendoza, O., et al.: Design of an interval type-2 fuzzy model with justifiable uncertainty. Inf. Sci. 513, 206–221 (2020)

    Article  Google Scholar 

  41. Chen, Y., Yang, J.X.: Study on center-of-sets type-reduction of interval type-2 fuzzy logic systems with noniterative algorithms. J. Intell. Fuzzy Syst. 40(6), 11099–11106 (2021)

    Article  Google Scholar 

  42. Hsu, C.H., Juang, C.F.: Evolutionary robot wall-following control using type- 2 fuzzy controller with species-de-activated continuous ACO. IEEE Trans. Fuzzy Syst. 21(1), 100–112 (2013)

    Article  Google Scholar 

  43. Ontiveros-Robles, E., Melin, P., Castillo, O.: Comparative analysis of noise robustness of type 2 fuzzy logic controllers. Kybernetika 54(1), 175–201 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Castillo, O., Melin, P., Ontiveros, E., et al.: A high-speed interval type 2 fuzzy system approach for dynamic parameter adaptation in metaheuristics. Eng. Appl. Artif. Intell. 85, 666–680 (2019)

    Article  Google Scholar 

  45. Gaxiola, F., Melin, P., Valdez, F., Castro, J.R., Castillo, O.: Optimization of type-2 fuzzy weights in backpropagation learning for neural networks using GAs and PSO. Appl. Soft Comput. 38, 860–871 (2016)

    Article  Google Scholar 

  46. Garg, H., Singh, S.: Algorithm for solving group decision-making problems based on the similarity measures under type 2 intuitionistic fuzzy sets environment. Soft. Comput. 24(10), 7361–7381 (2020)

    Article  Google Scholar 

  47. Ontiveros, E., Melin, P., Castillo, O.: Comparative study of interval type-2 and general type-2 fuzzy systems in medical diagnosis. Inf. Sci. 525, 37–53 (2020)

    Article  MathSciNet  Google Scholar 

  48. Zhao, T., Xiao, J.: State feedback control of interval type-2 Takagi-Sugeno fuzzy systems via interval type-2 regional switching fuzzy controllers. Int. J. Syst. Sci. 46(15), 2756–2769 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tong, S.C., Li, Y.M.: Observer-based adaptive fuzzy backstepping control of uncertain pure-feedback systems. Sci. China Inf. Sci. 57(1), 1–14 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Chen, Y., Yang, J.X.: Design of back propagation optimized Nagar-Bardini structure based interval type-2 fuzzy logic systems for fuzzy identification. Trans. Inst. Meas. Control. 43(12), 2780–2787 (2021)

    Article  Google Scholar 

  51. Khosravi, A., Nahavandi, S.: Load forecasting using interval type-2 fuzzy logic systems: optimal type reduction. IEEE Trans. Industr. Inf. 10(2), 1055–1063 (2014)

    Article  Google Scholar 

  52. Chen, Y., Wu, J.X., Lan, J.: Study on reasonable initialization enhanced Karnik-Mendel algorithms for centroid type-reduction of interval type-2 fuzzy logic systems. AIMS Math. 5(6), 6149–6168 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  53. Ontiveros, E., Melin, P., Castillo, O.: Higher order α-planes integration: a new approach to computational cost reduction of general type-2 fuzzy systems. Eng. Appl. Artif. Intell. 74, 186–197 (2018)

    Article  Google Scholar 

  54. Mo, H., Wang, F.Y., Zhou, M., et al.: Footprint of uncertainty for type-2 fuzzy sets. Inf. Sci. 272, 96–110 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wang, F.Y., Mo, H.: Some fundamental issues on type-2 fuzzy sets. Acta Autom. Sin. 43(7), 1114–1141 (2017)

    MATH  Google Scholar 

Download references

Acknowledgements

The paper is partially sponsored by the National Natural Science Foundation of China (NSFC) (61973146, 61773107), the Youth Fund of Education Department of Liaoning Province (LJKQZ2021143), the Doctoral Start-up Foundation of Liaoning Province (2021-BS-258), and the Talent Foundation of Liaoning University of Technology (xr2020002). The author is grateful to the well-known scholar J. M. Mendel, who has given many invaluable advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, C. & Yang, J. Design of Discrete Noniterative Algorithms for Center-of-Sets Type Reduction of General Type-2 Fuzzy Logic Systems. Int. J. Fuzzy Syst. 24, 2024–2035 (2022). https://doi.org/10.1007/s40815-022-01256-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01256-5

Keywords

Navigation