Skip to main content

Advertisement

Log in

A Hybrid AHP–FCE–WMCGP Approach for Internal Auditor Selection: A Generic Framework

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Internal audit function is an important cornerstone of corporate governance. Selecting qualified internal audit professionals has become a key success factor for any organization. However, research on the selection of internal auditors has limited exposure in the literature. In addition, prior research on personnel selection has only focused on applying traditional ranking methods, which calculate the overall utility value for each candidate and rank candidates in terms of the score. Little has been done for considering management’s goals regarding the attributes of the desired candidate. A robust model has not been constructed to address multiple aspiration levels for each goal in the classical personnel selection process. To fill these gaps, a novel generic framework is presented to evaluate and select ideal internal auditors, based on the analytic hierarchy process, fuzzy comprehensive evaluation, and weighted multi-choice goal programming. A case study is conducted to validate the feasibility and flexibility of the proposed approach. The results show that the proposed hybrid approach can assist decision-makers in selecting the candidate who is a good match for organizational needs. The implications of the paper are not restricted to the selection of internal auditors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Tang, F., Norman, C.S., Vendrzyk, V.P.: Exploring perceptions of data analytics in the internal audit function. Behav. Inf. Technol. 36(11), 1125–1136 (2017)

    Google Scholar 

  2. Wang, X., Ferreira, F.A.F., Chang, C.-T.: Multi-objective competency-based approach to project scheduling and staff assignment: case study of an internal audit project. Socioecon. Plann. Sci. (2021). https://doi.org/10.1016/j.seps.2021.101182

    Article  Google Scholar 

  3. Abbott, L.J., Daugherty, B., Parker, S., Peters, G.F.: Internal audit quality and financial reporting quality: the joint importance of independence and competence. J. Account. Res. 54(1), 3–40 (2016)

    Google Scholar 

  4. Nurdiono, N., Gamayuni, R.R.: The effect of internal auditor competency on internal audit quality and its implication on the accountability of local government. Eur. Res. Stud. J. XXI(4), 426–434 (2018)

    Google Scholar 

  5. Salgado, J.F., De Fruyt, F.: Personality in personnel selection. In: Evers, A., Anderson, N., Voskuijl, O. (eds.) The Blackwell Handbook of Personnel Selection, pp. 174–198. Blackwell Publishing Ltd, Oxford (2017)

    Google Scholar 

  6. Chaghooshi, A., Arab, A., Dehshiri, S.: A fuzzy hybrid approach for project manager selection. Decis. Sci. Lett. 5(3), 447–460 (2016)

    Google Scholar 

  7. Kilic, H.S., Demirci, A.E., Delen, D.: An integrated decision analysis methodology based on IF-DEMATEL and IF-ELECTRE for personnel selection. Decis. Support Syst. 137, 113360 (2020). https://doi.org/10.1016/j.dss.2020.113360

    Article  Google Scholar 

  8. Erdem, M.B.: A fuzzy analytical hierarchy process application in personnel selection in IT companies: a case study in a spin-off company. Acta Phys. Pol. A 130(1), 331–334 (2016)

    Google Scholar 

  9. Güngör, Z., Serhadlıoğlu, G., Kesen, S.E.: A fuzzy AHP approach to personnel selection problem. Appl. Soft Comput. 9(2), 641–646 (2009)

    Google Scholar 

  10. Varmazyar, M., Nouri, B.: A fuzzy AHP approach for employee recruitment. Decis. Sci. Lett. 3(1), 27–36 (2014). Accessed 11 March 2021

    Google Scholar 

  11. Dadeviren, M.: A hybrid multi-criteria decision-making model for personnel selection in manufacturing systems. J. Intell. Manuf. 21(4), 451–460 (2010)

    Google Scholar 

  12. Efe, B., Kurt, M.: A systematic approach for an application of personnel selection in assembly line balancing problem. Int. Trans. Oper. Res. 25(3), 1001–1025 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Nabeeh, N.A., Smarandache, F., Abdel-Basset, M., El-Ghareeb, H.A., Aboelfetouh, A.: An integrated Neutrosophic-TOPSIS approach and its application to personnel selection: a new trend in brain processing and analysis. IEEE Access 7, 29734–29744 (2019)

    Google Scholar 

  14. Samanlioglu, F., Taskaya, Y.E., Gulen, U.C., Cokcan, O.: A fuzzy AHP–TOPSIS-based group decision-making approach to IT personnel selection. Int. J. Fuzzy Syst. 20(5), 1576–1591 (2018)

    Google Scholar 

  15. Afshari, A., Mojahed, M., Yusuff, R.M.: Simple additive weighting approach to personnel selection problem. Int. J. Innov. Manage. Technol. 1(5), 511–515 (2010)

    Google Scholar 

  16. Krishankumar, R., Premaladha, J., Ravichandran, K.S., Sekar, K.R., Manikandan, R., Gao, X.Z.: A novel extension to VIKOR method under intuitionistic fuzzy context for solving personnel selection problem. Soft Comput. 24(2), 1063–1081 (2020)

    Google Scholar 

  17. Salehi, K.: An integrated approach of fuzzy AHP and fuzzy VIKOR for personnel selection problem. Global J. Manage. Stud. Res. 3(3), 89–95 (2016)

    Google Scholar 

  18. Chen, C., Hwang, Y., Hung, W. Applying multiple linguistic PROMETHEE method for personnel evaluation and selection. In: 2009 IEEE International Conference on Industrial Engineering and Engineering Management, Hong Kong, China (2009)

  19. de Farias-Aires, R.F., Ferreira, L.: The rank reversal problem in multi-criteria decision making: a literature review. Pesqui. Oper. 38(2), 331–362 (2018)

    Google Scholar 

  20. Hoffman, J.J., Schniederjans, M.J., Sebora, T.C.: A multi-objective approach to CEO selection. INFOR Inf. Syst. Oper. Res. 42(4), 237–255 (2004)

    MathSciNet  Google Scholar 

  21. Kelemenis, A., Askounis, D.: A new TOPSIS-based multi-criteria approach to personnel selection. Expert Syst. Appl. 37(7), 4999–5008 (2010)

    Google Scholar 

  22. Kelemenis, A., Ergazakis, K., Askounis, D.: Support managers’ selection using an extension of fuzzy TOPSIS. Expert Syst. Appl. 38(3), 2774–2782 (2011)

    Google Scholar 

  23. Saad, R.M., Ahmad, M.Z., Abu, M.S., Jusoh, M.S.: Hamming distance method with subjective and objective weights for personnel selection. Sci. World J. (2014). https://doi.org/10.1155/2014/865495

    Article  Google Scholar 

  24. Seol, I., Sarkis, J.: A multi-attribute model for internal auditor selection. Manage. Audit. J. 20(8), 876–892 (2005)

    Google Scholar 

  25. Seol, I., Sarkis, J.: A model for internal auditor selection: the case of a trading company in Hong Kong. Int. J. Audit. 10(3), 243–253 (2006)

    Google Scholar 

  26. Sarkis, J., Seol, I.: An analytic network process model for internal auditor selection. In: Kenneth, D.L., Ronald, K.K. (eds.) Applications of Management Science: In Productivity, Finance, and Operations, vol. 12, pp. 215–234. Emerald Group Publishing Limited, Bingley (2006)

    Google Scholar 

  27. Prasad, R.: Selection of internal safety auditors in an Indian construction organization based on the SWARA and ARAS methods. JOHE 8(3), 134–140 (2019)

    Google Scholar 

  28. Petridis, K., Drogalas, G., Zografidou, E.: Internal auditor selection using a TOPSIS/non-linear programming model. Ann. Oper. Res. 296(1), 513–539 (2021)

    MathSciNet  Google Scholar 

  29. Mihret, D.G., Grant, B.: The role of internal auditing in corporate governance: a Foucauldian analysis. Account. Audit. Account. J. 30(3), 699–719 (2017)

    Google Scholar 

  30. Zhang, D., Yang, S., Wang, Z., Yang, C., Chen, Y.: Assessment of ecological environment impact in highway construction activities with improved group AHP-FCE approach in China. Environ. Monit. Assess. 192(7), 451 (2020)

    Google Scholar 

  31. Yang, J., Shen, L., Jin, X., Hou, L., Shang, S., Zhang, Y.: Evaluating the quality of simulation teaching in fundamental nursing curriculum: AHP-Fuzzy comprehensive evaluation. Nurse Educ. Today 77, 77–82 (2019)

    Google Scholar 

  32. Guo, Z., Zhou, D., Zhou, Q., Mei, S., Zeng, S., Yu, D., Chen, J.: A hybrid method for evaluation of maintainability towards a design process using virtual reality. Comput. Ind. Eng. 140, 106227 (2020). https://doi.org/10.1016/j.cie.2019.106227

    Article  Google Scholar 

  33. Darko, A., Chan, A.P.C., Ameyaw, E.E., Owusu, E.K., Pärn, E., Edwards, D.J.: Review of application of analytic hierarchy process (AHP) in construction. Int. J. Constr. Manage. 19(5), 436–452 (2019)

    Google Scholar 

  34. Aggarwal, R.: Identifying and prioritizing human capital measurement indicators for personnel selection using fuzzy MADM. In: Pant, M. Deep, K., Nagar, A., Bansal J. C. (eds) Proceedings of the Third International Conference on Soft Computing for Problem Solving, pp. 427–439. Springer, Berlin (2014)

  35. Menekse, A., Camgoz-Akdag, H.: Internal audit planning using spherical fuzzy ELECTRE. Appl. Soft Comput. 114, 108155 (2022). https://doi.org/10.1016/j.asoc.2021.108155

    Article  Google Scholar 

  36. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    MATH  Google Scholar 

  37. Wang, B., Mo, C., He, C., Yan, Q.: Fuzzy synthetic evaluation of the long-term health of tunnel structures. Appl. Sci. 7(2), 203 (2017)

    Google Scholar 

  38. Zhang, X., Yang, J., Zhao, X.: Optimal study of the rural house space heating systems employing the AHP and FCE methods. Energy 150, 631–641 (2018)

    Google Scholar 

  39. Colapinto, C., Jayaraman, R., Marsiglio, S.: Multi-criteria decision analysis with goal programming in engineering, management and social sciences: a state-of-the art review. Ann. Oper. Res. 251(1), 7–40 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Chang, C.-T.: Revised multi-choice goal programming. Appl. Math. Model. 32(12), 2587–2595 (2008)

    MathSciNet  MATH  Google Scholar 

  41. Hocine, A., Zhuang, Z.-Y., Kouaissah, N., Li, D.-C.: Weighted-additive fuzzy multi-choice goal programming (WA-FMCGP) for supporting renewable energy site selection decisions. Eur. J. Oper. Res. 285(2), 642–654 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Mehlawat, M.K.: Credibilistic mean-entropy models for multi-period portfolio selection with multi-choice aspiration levels. Inf. Sci. 345, 9–26 (2016)

    MATH  Google Scholar 

  43. Liao, C.-N., Lin, C.-H., Fu, Y.-K.: Integrative model for the selection of a new product launch strategy, based on ANP, TOPSIS and MCGP: a case study. Technol. Econ. Dev. Econ. 22(5), 715–737 (2016)

    Google Scholar 

  44. Ho, H.-P.: The supplier selection problem of a manufacturing company using the weighted multi-choice goal programming and MINMAX multi-choice goal programming. Appl. Math. Model. 75, 819–836 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Robertson, I.T., Smith, M.: Personnel selection. J. Occup. Organ. Psychol. 74(4), 441–472 (2001)

    Google Scholar 

  46. Kotb, A., Elbardan, H., Halabi, H.: Mapping of internal audit research: a post-Enron structured literature review. Account. Audit. Account. J. 33(8), 1969–1996 (2020)

    Google Scholar 

  47. Coetzee, P., Erasmus, L.J., Plant, K.: Global assessment of internal audit competence: does one size fi t all? South. Afr. Bus. Rev. 19(2), 1–21 (2015)

    Google Scholar 

  48. Gartner: Audit Skills Diagnostic. Gartner, Inc, Stamford (2020)

    Google Scholar 

  49. IIA: Internal Audit Competency Framework. The Institute of Internal Auditors, Lake Mary (2020)

    Google Scholar 

  50. Mohd Ali, N.A., Shafii, Z., Shahimi, S.: Competency model for Shari’ah auditors in Islamic banks. J. Islam. Account. Bus. Res. 11(2), 377–399 (2020)

    Google Scholar 

  51. Fulton, D., Parchure, N.: Implementing a shared services model: when consolidating services, internal audit’s broad knowledge of the business works to the organization’s advantage. Intern. Auditor 75(1), 43–47 (2018)

    Google Scholar 

  52. van Kuijck, B., Paresi, V.: Personality of internal auditors; an exploratory study in The Netherlands. Maandbl. Voor Account. Bedrijfsecon. 94(3/4), 113–125 (2020)

    Google Scholar 

  53. Everett, J., Tremblay, M.-S.: Ethics and internal audit: moral will and moral skill in a heteronomous field. Crit. Perspect. Account. 25(3), 181–196 (2014)

    Google Scholar 

  54. DeZoort, T., Doxey, M., Pollard, T.: Root cause analysis and its effect on auditors’ judgments and decisions in an integrated audit. Contemp. Account. Res. 38(2), 1204–1230 (2021)

    Google Scholar 

  55. Elliott, M., Dawson, R., Edwards, J.: An improved process model for internal auditing. Manage. Audit. J. 22(6), 552–565 (2007)

    Google Scholar 

  56. Narkchai, S., Fadzil, F.H.B.: The communication skill on the performance of internal auditors in Thailand public limited company. Int. Rev. Manage. Mark. 7(4), 1–5 (2017)

    Google Scholar 

  57. Behrend, J., Eulerich, M.: The evolution of internal audit research: a bibliometric analysis of published documents (1926–2016). Account. Hist. Rev. 29(1), 103–139 (2019)

    Google Scholar 

  58. Christ, M. H., Eulerich, M., Krane, R., Wood, D. A.: New frontiers for internal audit research. SSRN. (2020). https://ssrn.com/abstract=3622148

  59. Hocine, A., Kouaissah, N.: XOR analytic hierarchy process and its application in the renewable energy sector. Omega 97, 102082 (2020). https://doi.org/10.1016/j.omega.2019.06.008

    Article  Google Scholar 

  60. Saaty, T.L.: The Analytic Hierarchy Process. McGraw Hill, New York (1980)

    MATH  Google Scholar 

  61. Kuo, Y.-F., Chen, P.-C.: Selection of mobile value-added services for system operators using fuzzy synthetic evaluation. Expert Syst. Appl. 30(4), 612–620 (2006)

    Google Scholar 

  62. Chang, T.-Y., Ku, C.C.-Y.: Fuzzy filtering ranking method for multi-criteria decision making. Comput. Ind. Eng. 156, 107217 (2021). https://doi.org/10.1016/j.cie.2021.107217

    Article  Google Scholar 

  63. Schrage, L.: Optimization Modeling with LINGO, 6th edn. LINDO Systems Inc, Chicago (2006)

    Google Scholar 

  64. Seol, I., Sarkis, J., Wang, Z.: A cross-cultural comparative study of internal auditor skills: UK vs Korea. J. Appl. Account. Res. 18(3), 341–355 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Ter Chang.

Appendices

Appendix 1

Decision-making sets on the ten main competencies for candidate A are expressed as follows:

$$D_{A1} = W_{1} \times R_{A1} = [0.5816{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0.116{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0.3024] \times \left[ \begin{gathered} {0 0 0}{\text{.25 0}}{.75 0 0 0} \hfill \\ {0 0}{\text{.75 0}}{.25 0 0 0 0} \hfill \\ {0 0 0}{\text{.75 0}}{.25 0 0 0} \hfill \\ \end{gathered} \right] = \left[ {{0}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {0}{\text{.0871}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {0}{\text{.4012}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {0}{\text{.5117 0 0 0}}} \right],$$
(9)
$$D_{{A{2}}} = W_{{2}} \times R_{{A{2}}} = [0.{8272}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0.1{728}] \times \left[ \begin{gathered} {0 0 0}{\text{.75 0}}{.25 0 0 0} \hfill \\ {0 0}{\text{.5 0}}{.5 0 0 0 0} \hfill \\ \end{gathered} \right] = \left[ {{0}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {0}{\text{.0865}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {0}{\text{.7068}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {0}{\text{.2068 0 0 0}}} \right],$$
(10)
$$D_{A} = W \times R_{A} = \left[ {\begin{array}{*{20}l} {0.197} \hfill & {0.1358} \hfill & \cdots \hfill & {0.0681} \hfill \\ \end{array} } \right] \times \left[ {\begin{array}{*{20}c} 0 & {0.0871} & \ldots & 0 \\ 0 & {0.0865} & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \ldots & 0 \\ \end{array} } \right] = \left[ {\begin{array}{*{20}l} {0.0105} \hfill & {0.0771} \hfill & {0.4666} \hfill & {0.354} \hfill & {0.0381} \hfill & {0.0538} \hfill & 0 \hfill \\ \end{array} } \right]$$
(11)

Appendix 2

Final comprehensive evaluation set for candidate A is expressed as follows:

$$D_{A} = W \times R_{A} = [0.{197}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} 0.{1358}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots { 0}{\text{.0681}}] \times \left[ {\begin{array}{*{20}c} 0 & {0.0871} & \ldots & 0 \\ 0 & {0.0865} & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \ldots & 0 \\ \end{array} } \right] = \left[ {{0}{\text{.0105}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {0}{\text{.0771}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {0}{\text{.4666}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {0}{\text{.354 0}}{.0381 0}{\text{.0538 0}}} \right].$$
(12)

Appendix 3

The personnel selection decision model is formulated as follows:

$$\begin{gathered} {\text{Min }}0.197 \times (d_{1}^{ + } + 2d_{1}^{ - } + e_{1}^{ + } + e_{1}^{ - } ){ + }0.1358 \times (d_{2}^{ + } + 2d_{2}^{ - } + e_{2}^{ + } + e_{2}^{ - } ){ + 0}{\text{.0976}} \times (d_{3}^{ + } + 3d_{3}^{ - } + e_{3}^{ + } + e_{3}^{ - } ). \hfill \\ { + } \cdots { + }0.0681 \times (d_{10}^{ + } + 3d_{10}^{ - } + e_{10}^{ + } + e_{10}^{ - } ) \hfill \\ \end{gathered}$$
(13)

Subject to

$$\left. \begin{gathered} 48.4906x_{1} + 44.7717x_{2} + 48.8407x_{3} + 49.8858x_{4} + 36.5145x_{5} + 48.3765x_{6} - d_{1}^{ + } + d_{1}^{ - } = y_{1} \hfill \\ y_{1} - e_{1}^{ + } + e_{1}^{ - } = 60 \hfill \\ 40 \le y_{1} \le 60 \hfill \\ \end{gathered} \right\}{\text{For G1,}}$$
(14)
$$\left. \begin{gathered} 42.4062x_{1} + 39.1354x_{2} + 35.677x_{3} + 55.677x_{4} + 35.677x_{5} + 25x_{6} - d_{2}^{ + } + d_{2}^{ - } = y_{2} \hfill \\ y_{2} - e_{2}^{ + } + e_{2}^{ - } = 60 \hfill \\ 40 \le y_{2} \le 60 \hfill \\ \end{gathered} \right\}{\text{For G2,}}$$
(15)
$$\left. \begin{gathered} 83.1737x_{1} + 81.7341x_{2} + 85.5097x_{3} + 82.4257x_{4} + 77.2541x_{5} + 84.375x_{6} - d_{3}^{ + } + d_{3}^{ - } = y_{3} \hfill \\ y_{3} - e_{3}^{ + } + e_{3}^{ - } = 90 \hfill \\ 80 \le y_{3} \le 90 \hfill \\ \end{gathered} \right\}{\text{For G3,}}$$
(16)
$$\left. \begin{gathered} 55.7709x_{1} + 47.0338x_{2} + 41.5419x_{3} + 29.7944x_{4} + 26.5051x_{5} + 32.7239x_{6} - d_{10}^{ + } + d_{10}^{ - } = y_{10} \hfill \\ y_{10} - e_{10}^{ + } + e_{10}^{ - } = 60 \hfill \\ 40 \le y_{10} \le 60 \hfill \\ \end{gathered} \right\}{\text{For G10,}}$$
(17)
$$x_{1} + x_{2} + x_{3} + x_{4} + x_{5} + x_{6} = 1,$$
(18)
$$x_{j} = 0\,{\text{or}}\,{1,}\,j = 1,2,...,6,$$
(19)
$$d_{i}^{ + } ,{\kern 1pt} {\kern 1pt} {\kern 1pt} d_{i}^{ - } ,{\kern 1pt} {\kern 1pt} e_{i}^{ + } ,{\kern 1pt} e_{i}^{ - } \ge 0,\,\,i = 1,2,...,10.$$
(20)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ferreira, F.A.F., Tao, M. et al. A Hybrid AHP–FCE–WMCGP Approach for Internal Auditor Selection: A Generic Framework. Int. J. Fuzzy Syst. 24, 2229–2249 (2022). https://doi.org/10.1007/s40815-022-01266-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01266-3

Keywords