Skip to main content
Log in

Evaluation of Multi-stage Fuzzy Networks in DEA and DEA-R Based on Liquidity Ratios with Undesirable Outputs

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, radial models of multi-stage fuzzy DEA and DEA-R networks are first proposed based on liquidity ratios with desirable and undesirable outputs for evaluating a set of decision-making units (DMUs). Second, non-radial models are proposed based on the Slacks-Based Measure of Inefficiency (SBMI) and a Directional Non-Radial (DNR) model. On the one hand, the similarity of DEA and DEA-R models, as well as adherence to the axioms in constructing the production possibility set (PPS), has provided the possibility to model the restrictions of the aforementioned models; on the other hand, for efficiency calculation, different objective functions (radial and non-radial) have been used in a multi-stage network structure with fuzzy data. The models proposed for calculating the efficiency of the first, second, and third stages, as well as the overall network, in multi-stage networks therefore take the form of a fuzzy linear programming model that has been converted into linear programming. The advantage to the present article, aside from the linearity of the multi-stage fuzzy network models, is that we can model the corresponding models in DEA and DEA-R-based purely on liquidity ratios with desirable and undesirable outputs. Finally, focusing on a multi-stage network in the Iranian education system while considering fuzzy data, the efficiency and inefficiency of the DMUs are calculated based on liquidity ratios with desirable and undesirable outputs. It can be observed that in the SBMI model, the overall efficiency scores in DEA and DEA-R models are 58% and 45%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. http://panacms.ir/Media/pdf/1398/12/17/637191929654691862.pdf.

References

  1. Farell, M.: The Measurement of Productive Efficiency, Techniques and Applications, England. Oxford University Press, Oxford (1957)

    Google Scholar 

  2. Charnes, A., Cooper, W.W., Rhodes, E.: Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2(6), 444–429 (1978)

    MathSciNet  MATH  Google Scholar 

  3. Banker, R.D., Charnes, A., Cooper, W.W.: Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 30(9), 1078–1092 (1984)

    MATH  Google Scholar 

  4. Tone, K.: A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 130(3), 498–509 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Kao, C., Hung, H.-T.: Data envelopment analysis with common weights: the compromise solution approach. J. Oper. Res. Soc. 56(10), 1196–1203 (2005)

    MATH  Google Scholar 

  6. Cook, W.D., Seiford, L.M.: Data envelopment analysis (DEA)—thirty years on. Eur. J. Oper. Res. 192(1), 1–17 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Wang, Y.-M., Chin, K.-S.: A neutral DEA model for cross-efficiency evaluation and its extension. Expert Syst. Appl. 37(5), 3666–3675 (2010)

    Google Scholar 

  8. Esmaeili, M.: An enhanced Russell measure in DEA with interval data. Appl. Math. Comput. 219(4), 1589–1593 (2012)

    Google Scholar 

  9. Liu, J.S., et al.: A survey of DEA applications. Omega 41(5), 893–902 (2013)

    Google Scholar 

  10. Titko, J., Jureviciene, D.: DEA application at cross-country benchmarking: Latvian vs Lithuanian banking sector. Procedia-Soc. Behav. Sci. 110, 1124–1135 (2014)

    Google Scholar 

  11. Sueyoshi, T., Yuan, Y., Goto, M.: A literature study for DEA applied to energy and environment. Energy Econ. 62, 104–124 (2017)

    Google Scholar 

  12. Javadinejad, S., et al.: Using simulation model to determine the regulation and to optimize the quantity of chlorine injection in water distribution networks. Model. Earth Syst. Environ. 5(3), 1015–1023 (2019)

    Google Scholar 

  13. Tone, K., Chang, T.-S., Wu, C.-H.: Handling negative data in slacks-based measure data envelopment analysis models. Eur. J. Oper. Res. 282(3), 926–935 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Cook, W.D., Liang, L., Zhu, J.: Measuring performance of two-stage network structures by DEA: a review and future perspective. Omega 38(6), 423–430 (2010)

    Google Scholar 

  15. Fukuyama, H., Mirdehghan, S.M.J.E.J.O.O.R.: Identifying the efficiency status in network DEA. Eur. J. Oper. Res. 220(1), 85–92 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Ostad-Ali-Askari, K., Shayan, M.: Subsurface drain spacing in the unsteady conditions by HYDRUS-3D and artificial neural networks. Arab. J. Geosci. 14(18), 1–14 (2021)

    Google Scholar 

  17. Huang, J., Chen, J., Yin, Z.: A network DEA model with super efficiency and undesirable outputs: an application to bank efficiency in China. Math. Probl. Eng. (2014). https://doi.org/10.1155/2014/793192

    Article  Google Scholar 

  18. Huang, C.-W., et al.: Assessing the performance of Taiwan’s environmental protection system with a non-radial network DEA approach. Energy Policy 74, 547–556 (2014)

    Google Scholar 

  19. Kao, H.-Y., Chan, C.-Y., Wu, D.-J.: A multi-objective programming method for solving network DEA. Appl. Soft Comput. 24, 406–413 (2014)

    Google Scholar 

  20. Kao, C.: Network data envelopment analysis: a review. Eur. J. Oper. Res. 239(1), 1–16 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Kao, C.: Efficiency decomposition in network data envelopment analysis with slacks-based measures. Omega 45, 1–6 (2014)

    Google Scholar 

  22. Lozano, S.: Alternative SBM model for network DEA. Comput. Ind. Eng. 82, 33–40 (2015)

    Google Scholar 

  23. Lozano, S.: Slacks-based inefficiency approach for general networks with bad outputs: An application to the banking sector. Omega 60, 73–84 (2016)

    Google Scholar 

  24. Zhou, Z., et al.: Stochastic network DEA models for two-stage systems under the centralized control organization mechanism. Comput. Ind. Eng. 110, 404–412 (2017)

    Google Scholar 

  25. Chen, K., Zhu, J.J.O.: Additive slacks-based measure: computational strategy and extension to network DEA. Omega 91, 102022 (2020)

    Google Scholar 

  26. Yu, H., et al.: A comparative study of airline efficiency in China and India: a dynamic network DEA approach. Res. Transp. Econ. 76, 100746 (2019)

    Google Scholar 

  27. Yin, P., et al.: A DEA-based two-stage network approach for hotel performance analysis: An internal cooperation perspective. Omega 93, 102035 (2020)

    Google Scholar 

  28. Sarkhosh-Sara, A., et al.: Assessing the sustainability of high-, middle-, and low-income countries: a network DEA model in the presence of both zero data and undesirable outputs. Sustain. Prod. Consum. 21, 252–268 (2020)

    Google Scholar 

  29. Zadeh, L.A.: Fuzzy sets. Inf. Control. 8(3), 338–353 (1965)

    MATH  Google Scholar 

  30. Saati, S.M., et al.: Efficiency analysis and ranking of DMUs with fuzzy data. Fuzzy Optim. Decis. Mak. 1(3), 255–267 (2002)

    MathSciNet  MATH  Google Scholar 

  31. Abbasbandy, S., et al.: LU decomposition method for solving fuzzy system of linear equations. Appl. Math. Comput. 172(1), 633–643 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Khorram, E., et al.: Solving nonlinear multi-objective optimization problems with fuzzy relation inequality constraints regarding Archimedean triangular norm compositions. Fuzzy Optim. Decis. Mak. 11(3), 299–335 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Khorram, E., Ezzati, R., Valizadeh, Z.: Linear fractional multi-objective optimization problems subject to fuzzy relational equations with a continuous Archimedean triangular norm. Inf. Sci. 267, 225–239 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Azadi, M., et al.: A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context. Comput. Oper. Res. 54, 274–285 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Mottaghi, A., Ezzati, R., Khorram, E.: A new method for solving fuzzy linear programming problems based on the fuzzy linear complementary problem (FLCP). Int. J. Fuzzy Syst. 17(2), 236–245 (2015)

    MathSciNet  Google Scholar 

  36. Nasseri, S.H., Ebrahimnejad, A., Gholami, O.: Fuzzy stochastic data envelopment analysis with undesirable outputs and its application to banking industry. Int. J. Fuzzy Syst. 20(2), 534–548 (2018)

    MathSciNet  Google Scholar 

  37. Hatami-Marbini, A., et al.: Fuzzy efficiency measures in data envelopment analysis using lexicographic multiobjective approach. Comput. Ind. Eng. 105, 362–376 (2017)

    Google Scholar 

  38. Pirnazar, M., et al.: The evaluation of the usage of the fuzzy algorithms in increasing the accuracy of the extracted land use maps. Int. J. Glob. Environ. Issues 17(4), 307–321 (2018)

    Google Scholar 

  39. Pourmahmoud, J., BafekrSharak, N.: Assessing the undesirable cost imposed on the system with fuzzy DEA. Int. J. Data Envel. Anal. 7(3), 15–22 (2019)

    Google Scholar 

  40. Arana-Jiménez, M., et al.: A fuzzy DEA slacks-based approach. J. Comput. Appl. Math. 404, 113180 (2020)

    MathSciNet  MATH  Google Scholar 

  41. Hatami-Marbini, A.: Benchmarking with network DEA in a fuzzy environment. RAIRO-Oper. Res. 53(2), 687–703 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Bagheri, M., et al.: Solving fuzzy multi-objective shortest path problem based on data envelopment analysis approach. Complex Intell. Syst. 7(2), 725–740 (2021)

    Google Scholar 

  43. Tsai, C.-M., et al.: A new fuzzy DEA model for solving the MCDM problems in supplier selection. J. Mar. Sci. Technol. 29(1), 7 (2021)

    Google Scholar 

  44. Goker, N., Karsak, E.E.: Two-stage common weight DEA-Based approach for performance evaluation with imprecise data. Socio-Econ. Plan. Sci. 74, 100943 (2021)

    Google Scholar 

  45. Izadikhah, M.: Modelling bank performance: a novel fuzzy two-stage DEA approach. Fuzzy Inf. Eng. 11(2), 149–174 (2019)

    Google Scholar 

  46. Wu, D.D., et al.: Efficiency analysis of cross-region bank branches using fuzzy data envelopment analysis. Appl. Math. Comput. 181(1), 271–281 (2006)

    MathSciNet  MATH  Google Scholar 

  47. Saati, S., Memariani, A.: SBM model with fuzzy input-output levels in DEA. Aust. J. Basic Appl. Sci. 3(2), 352–357 (2009)

    Google Scholar 

  48. Kao, C., Liu, S.-T.: Efficiencies of two-stage systems with fuzzy data. Fuzzy Sets Syst. 176(1), 20–35 (2011)

    MathSciNet  MATH  Google Scholar 

  49. Wen, M., Li, H.: Fuzzy data envelopment analysis (DEA): model and ranking method. J. Comput. Appl. Math. 223(2), 872–878 (2009)

    MATH  Google Scholar 

  50. Wen, M., et al.: A new ranking method to fuzzy data envelopment analysis. Comput. Math. Appl. 59(11), 3398–3404 (2010)

    MathSciNet  MATH  Google Scholar 

  51. Lozano, S.: Process efficiency of two-stage systems with fuzzy data. Fuzzy Sets Syst. 243, 36–49 (2014)

    MathSciNet  MATH  Google Scholar 

  52. Shermeh, H.E., Najafi, S., Alavidoost, M.: A novel fuzzy network SBM model for data envelopment analysis: a case study in Iran regional power companies. Energy 112, 686–697 (2016)

    Google Scholar 

  53. León, T., et al.: A fuzzy mathematical programming approach to the assessment of efficiency with DEA models. Fuzzy Sets Syst. 139(2), 407–419 (2003)

    MathSciNet  MATH  Google Scholar 

  54. Wang, Y.-M., Luo, Y., Liang, L.: Fuzzy data envelopment analysis based upon fuzzy arithmetic with an application to performance assessment of manufacturing enterprises. Expert Syst. Appl. 36(3), 5205–5211 (2009)

    Google Scholar 

  55. Liu, S.-T.: Efficiency ranking in fuzzy two-stage DEA: a mathematical programming approach. In: The 6th International Conference on Soft Computing and Intelligent Systems, and The 13th International Symposium on Advanced Intelligence Systems. IEEE (2012)

  56. Rashidi, K., Cullinane, K.: A comparison of fuzzy DEA and fuzzy TOPSIS in sustainable supplier selection: implications for sourcing strategy. Expert Syst. Appl. 121, 266–281 (2019)

    Google Scholar 

  57. Kao, C., Liu, S.-T.: A mathematical programming approach to fuzzy efficiency ranking. Int. J. Prod. Econ. 86(2), 145–154 (2003)

    Google Scholar 

  58. Ezzati, R., et al.: An approach for ranking of fuzzy numbers. Expert Syst. Appl. 39(1), 690–695 (2012)

    Google Scholar 

  59. Chen, Y.-C., et al.: The analysis of bank business performance and market risk—applying fuzzy DEA. Econ. Model. 32, 225–232 (2013)

    Google Scholar 

  60. Arya, A., Yadav, S.P.: Development of intuitionistic fuzzy super-efficiency slack based measure with an application to health sector. Comput. Ind. Eng. 115, 368–380 (2018)

    Google Scholar 

  61. Hatami-Marbini, A., Emrouznejad, A., Tavana, M.: A taxonomy and review of the fuzzy data envelopment analysis literature: two decades in the making. Eur. J. Oper. Res. 214(3), 457–472 (2011)

    MathSciNet  MATH  Google Scholar 

  62. Hinojosa, M.A., et al.: DEA production games with fuzzy output prices. Fuzzy Optim. Decis. Mak. 17(4), 401–419 (2018)

    MathSciNet  MATH  Google Scholar 

  63. Ghasemi, M.-R., et al.: A fuzzy expected value approach under generalized data envelopment analysis. Knowl.-Based Syst. 89, 148–159 (2015)

    Google Scholar 

  64. Kao, C., Liu, S.-T.: Fuzzy efficiency measures in data envelopment analysis. Fuzzy Sets Syst. 113(3), 427–437 (2000)

    MATH  Google Scholar 

  65. Guo, P., Tanaka, H.: Fuzzy DEA: a perceptual evaluation method. Fuzzy Sets Syst. 119(1), 149–160 (2001)

    MathSciNet  Google Scholar 

  66. Wang, Y.-M., Chin, K.-S.: Fuzzy data envelopment analysis: a fuzzy expected value approach. Expert Syst. Appl. 38(9), 11678–11685 (2011)

    Google Scholar 

  67. Hsiao, B., et al.: Using fuzzy super-efficiency slack-based measure data envelopment analysis to evaluate Taiwan’s commercial bank efficiency. Expert Syst. Appl. 38(8), 9147–9156 (2011)

    Google Scholar 

  68. Hatami-Marbini, A., et al.: Efficiency measurement in fuzzy additive data envelopment analysis. Int. J. Ind. Syst. Eng. 10(1), 1–20 (2012)

    Google Scholar 

  69. Tavana, M., et al.: Chance-constrained DEA models with random fuzzy inputs and outputs. Knowl. Based Syst. 52, 32–52 (2013)

    Google Scholar 

  70. Emrouznejad, A., Tavana, M., Hatami-Marbini, A.: The state of the art in fuzzy data envelopment analysis. In: Performance Measurement with Fuzzy Data Envelopment Analysis, pp. 1–45. Springer, Berlin (2014)

    MATH  Google Scholar 

  71. Zhou, W., Xu, Z.: An overview of the fuzzy data envelopment analysis research and its successful applications. Int. J. Fuzzy Syst. 22(4), 1037–1055 (2020)

    MathSciNet  Google Scholar 

  72. Singh, N., Pant, M.: Efficiency assessment of Indian paper mills through fuzzy DEA. Mater. Manuf. Process. 35(6), 725–736 (2020)

    Google Scholar 

  73. Amirteimoori, A., et al.: Double frontier two-stage fuzzy data envelopment analysis. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 28(01), 117–152 (2020)

    MathSciNet  Google Scholar 

  74. Aghayi, N., Salehpour, S.: A generalized fuzzy cost efficiency model. RAIRO-Oper. Res. 54, 1775–1791 (2020)

    MathSciNet  MATH  Google Scholar 

  75. Jahani Sayyad Noveiri, M., Kordrostami, S.: Sustainability assessment using a fuzzy DEA aggregation approach: a healthcare application. Soft Comput. 25(16), 10829–10849 (2021)

    Google Scholar 

  76. Wang, C.-N., et al.: Assessing renewable energy production capabilities using DEA window and fuzzy TOPSIS model. Symmetry 13(2), 334 (2021)

    Google Scholar 

  77. Bagheri, M., et al.: Fuzzy arithmetic DEA approach for fuzzy multi-objective transportation problem. Oper. Res. (2020). https://doi.org/10.1007/s12351-020-00592-4

    Article  Google Scholar 

  78. Liu, Y., Eckert, C.M., Earl, C.: A review of fuzzy AHP methods for decision-making with subjective judgements. Expert Syst. Appl. 161, 113738 (2020)

    Google Scholar 

  79. Despić, O., Despić, M., Paradi, J.C.: DEA-R: ratio-based comparative efficiency model, its mathematical relation to DEA and its use in applications. J. Prod. Anal. 28(1), 33–44 (2007)

    Google Scholar 

  80. Kamyab, P., Mozaffari, M.R.: Cost efficiency in three stage network DEA-R processes. J. New Res. Math. 6(23), 147–170 (2020)

    Google Scholar 

  81. Gerami, J., Mozaffari, M.R., Wanke, P.F.: A multi-criteria ratio-based approach for two-stage data envelopment analysis. Expert Syst. Appl. 158, 113508 (2020)

    Google Scholar 

  82. Mozaffari, M.R., et al.: Finding efficient surfaces in DEA-R models. Appl. Math. Comput. 386, 125497 (2020)

    MathSciNet  MATH  Google Scholar 

  83. Fernandez-Castro, A., Smith, P.J.O.: Towards a general non-parametric model of corporate performance. Omega 22(3), 237–249 (1994)

    Google Scholar 

  84. Chen, Y., Ali, A.I.: Output–input ratio analysis and DEA frontier. Eur. J. Oper. Res. 142(3), 476–479 (2002)

    MathSciNet  MATH  Google Scholar 

  85. Liu, W., et al.: A study of DEA models without explicit inputs. Omega 39(5), 472–480 (2011)

    Google Scholar 

  86. Song, M., et al.: An extended aggregated ratio analysis in DEA. J. Syst. Sci. Syst. Eng. 20(2), 249–256 (2011)

    Google Scholar 

  87. Emrouznejad, A., Amin, G.R.: DEA models for ratio data: convexity consideration. Appl. Math. Model. 33(1), 486–498 (2009)

    MATH  Google Scholar 

  88. Hatami-Marbini, A., Toloo, M.: Data envelopment analysis models with ratio data: a revisit. Comput. Ind. Eng. 133, 331–338 (2019)

    Google Scholar 

  89. Olesen, O.B., Petersen, N.C., Podinovski, V.V.: Efficiency analysis with ratio measures. Eur. J. Oper. Res. 245(2), 446–462 (2015)

    MathSciNet  MATH  Google Scholar 

  90. Olesen, O.B., Petersen, N.C., Podinovski, V.V.: Efficiency measures and computational approaches for data envelopment analysis models with ratio inputs and outputs. Eur. J. Oper. Res. 261(2), 640–655 (2017)

    MathSciNet  MATH  Google Scholar 

  91. Wei, C.-K., et al.: Using the DEA-R model in the hospital industry to study the pseudo-inefficiency problem. Expert Syst. Appl. 38(3), 2172–2176 (2011)

    Google Scholar 

  92. Mozaffari, M., et al.: Cost and revenue efficiency in DEA-R models. Comput. Ind. Eng. 78, 188–194 (2014)

    Google Scholar 

  93. Despotis, D.: Measuring human development via data envelopment analysis: the case of Asia and the Pacific. Omega 33(5), 385–390 (2005)

    Google Scholar 

  94. Allahviranloo, T., et al.: Solving fully fuzzy linear programming problem by the ranking function. Appl. Math. Sci. 2(1), 19–32 (2008)

    MathSciNet  MATH  Google Scholar 

  95. Almaqtari, F.A., et al.: The determinants of profitability of Indian commercial banks: a panel data approach. Int. J. Financ. Econ. 24(1), 168–185 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. R. Mozaffari or Yong Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozaffari, M.R., Ostovan, S., Wanke, P.F. et al. Evaluation of Multi-stage Fuzzy Networks in DEA and DEA-R Based on Liquidity Ratios with Undesirable Outputs. Int. J. Fuzzy Syst. 24, 2411–2446 (2022). https://doi.org/10.1007/s40815-022-01290-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01290-3

Keywords

Navigation