Skip to main content
Log in

Multiple Fuzzy Parameters Nonlinear Seepage model for Shale Gas Reservoirs

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper focuses on improving the accuracy of seepage models for shale gas reservoirs on the basis of the fuzzy set theory. First, the fuzzy numbers are used to describe the permeability, formation thickness, initial reservoir pressure, gas viscosity, limiting adsorbed mount, and compression factor of shale gas reservoirs. Second, based on the conventional seepage model, single fuzzy parameter seepage models and the multiple fuzzy parameter seepage model for shale gas reservoirs are set up in turn. Solutions to the fuzzy seepage model are handled by means of the fuzzy structural element method. Finally, with the assistance of the centroid method, we work out a single numerical solution in accordance with the fuzzy solution set. In contrast with the conventional seepage models of shale gas reservoirs, the fuzzy seepage model in this paper makes use of the fuzzy numbers to describe the parameters with uncertainty, which also completely considers the in-homogeneity and complex variability of shale gas reservoirs. A numerical simulation example is presented to show the efficiency and development of the fuzzy seepage model. On the basis of the fuzzy seepage model, the sensitivity analysis of relevant main control parameters is carried out to conduct a further study on relevant seepage laws of shale gas reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shao, J., Zhang, Z., Yu, Z., Wang, J., Zhao, Y., Yang, Q.: Community detection and link prediction via cluster-driven low-rank matrix completion. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pp. 3382–3388. International Joint Conferences on Artificial Intelligence Organization, 7 (2019)

  2. Yu, Z., Zhang, Z., Chen, H., Shao, J.: Structured subspace embedding on attributed networks. Inf. Sci. 512, 726–740 (2019)

    Article  Google Scholar 

  3. Freeman, C.M., Moridis, G., Ilk, D., Blasingame, T.A.: A numerical study of performance for tight gas and shale gas reservoir systems. J. Petroleum Sci. Eng. 108, 22–39 (2013)

    Article  Google Scholar 

  4. Guo, T., Zhang, S., Zou, Y., Xiao, B.: Numerical simulation of hydraulic fracture propagation in shale gas reservoir. J. Nat. Gas Sci. Eng. 26, 847–856 (2015)

    Article  Google Scholar 

  5. Li, S., Zhang, D., Zheng, P., Gui, Q.: Similar structure of solution for triple media shale gas reservoir. J. Petroleum Sci. Eng. 152, 67–80 (2017)

    Article  Google Scholar 

  6. Shen, Y., Pang, Y., Shen, Z., Tian, Y., Ge, H.: Multiparameter analysis of gas transport phenomena in shale gas reservoirs: apparent permeability characterization. Sci. Rep. 8(1), 2601 (2018)

    Article  Google Scholar 

  7. Javadpour, F., Fisher, D., Unsworth, M.: Nanoscale gas flow in shale gas sediments. J. Can. Pet. Technol. 46(10), 10 (2007)

    Article  Google Scholar 

  8. Freeman, C.M., Moridis, G., Ilk, D., Blasingame, T.A.: A numerical study of performance for tight gas and shale gas reservoir systems. J. Petroleum Sci. Eng. 1(108), 22–39 (2013)

    Article  Google Scholar 

  9. Michel, G.G., Sigal, R.F., Civan, F., Devegowda, D.: Parametric Investigation of Shale Gas Production Considering Nano-Scale Pore Size Distribution, Formation Factor, and Non-Darcy Flow Mechanisms, volume All Days of SPE Annual Technical Conference and Exhibition, 10 (2011)

  10. Deng, J., Zhu, W., Ma, Q.: A new seepage model for shale gas reservoir and productivity analysis of fractured well. Fuel 124, 232–240 (2014)

    Article  Google Scholar 

  11. Yuan, Y., Gholizadeh Doonechaly, N., Rahman, S.: An analytical model of apparent gas permeability for tight porous media. Transp. Porous Media 111(1), 193–214 (2016)

    Article  MathSciNet  Google Scholar 

  12. Mehmani, A., Prodanović, M., Javadpour, F.: Multiscale, multiphysics network modeling of shale matrix gas flows. Transp. Porous Media 99(2), 377–390 (2013)

    Article  Google Scholar 

  13. Naraghi, M.E., Javadpour, F.: A stochastic permeability model for the shale-gas systems. Int. J. Coal Geol. 140, 111–124 (2015)

    Article  Google Scholar 

  14. Zhang, H., Shu, L., Liao, S.: Generalized trapezoidal fuzzy soft set and its application in medical diagnosis. J. Appl. Math. 2014(3), 1–12 (2014)

    MATH  Google Scholar 

  15. Shuang, W., Lan, S.: Maximum principle for partially-observed optimal control problems of stochastic delay systems. J. Syst. Sci. Complex. 30(2), 1–13 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Nasiri, A., Nguang, S.K., Swain, A., Almakhles, D.J.: Reducing conservatism in \({H}_{\infty }\) robust state feedback control design of T-S fuzzy systems: a non-monotonic approach. IEEE Trans. Fuzzy Syst. 26(1), 386–390 (2018)

    Google Scholar 

  17. Kochen, M.: Applications of fuzzy sets in psychology. In: Zadeh, L.A., Fu, K.-S., Tanaka, K., Shimura, M. (eds.) Fuzzy Sets and their Applications to Cognitive and Decision Processes, pp. 395–408. Academic Press, New York (1975)

    Chapter  Google Scholar 

  18. Balaman, ŞY.: Uncertainty issues in biomass-based production chains. In: Balaman, ŞY. (ed.) Decision-Making for Biomass-Based Production Chains, pp. 113–142. Academic Press, New York (2019)

    Chapter  Google Scholar 

  19. Li, L.G., Peng, D.H.: Interval-valued hesitant fuzzy hamacher synergetic weighted aggregation operators and their application to shale gas areas selection. Math. Probl. Eng. 2014(9), 27 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Wu-Guang, L.I., Yang, S.L., Wang, Z.Z., Dong, Q., Wang, H.X.: Shale gas development evaluation model based on the fuzzy optimization analysis. J. China Coal Soc. 38(2), 264–270 (2013)

    Google Scholar 

  21. Fan, G., Zhong, D., Yan, F., Yue, P.: A hybrid fuzzy evaluation method for curtain grouting efficiency assessment based on an AHP method extended by D numbers. Expert Syst. Appl. 44, 289–303 (2016)

    Article  Google Scholar 

  22. Sabzi, H.Z., Humberson, D., Abudu, S., King, J.P.: Optimization of adaptive fuzzy logic controller using novel combined evolutionary algorithms, and its application in Diez Lagos flood controlling system, Southern New Mexico. Expert Syst. Appl. 43, 154–164 (2016)

    Article  Google Scholar 

  23. Zhang, D., Qiu, D., Shu, L.: Fuzzy structure element method for solving fuzzy trilinear seepage model of shale gas reservoir. Int. J. Fuzzy Syst. 21(5), 1597–1612 (2019)

    Article  MathSciNet  Google Scholar 

  24. Deng, J., Zhu, W., Qi, Q., Tian, W., Yue, M.: Study on the steady and transient pressure characteristics of shale gas reservoirs. J. Nat. Gas Sci. Eng. 24, 210–216 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments and suggestions. This work is supported by the National Natural Science Foundation of China (No. 11361050 and No.11671284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duo Zhang.

Fuzzy Formation Thickness Model

Fuzzy Formation Thickness Model

The derivative of the Eq. (6) about h is

$$\begin{aligned} \frac{D_2}{2\sqrt{\frac{A_2^2}{k_0^2} +\frac{C_2+D_2h}{k_0}} + E_2}, \end{aligned}$$
(32)

where

$$\begin{aligned} {\left\{ \begin{array}{ll} A_2 = \frac{3\pi \mu aD_k}{16},\\ B_2 = \frac{P_{sc}T\mu Z \pi \left(r_e^2 - r_w^2\right)\left[\rho _c V_m\left(\frac{P_e}{P_e+P_L} - \frac{P}{P+P_L}\right) - \phi _m\right]}{T_{sc}Z_{sc}\rho _{gsc}},\\ C_2 = -2A_2ln\frac{r_e}{r}(P_e -P_w) + 2A_2P_e,\\ D_2 = \frac{B}{2}\left[(r_e^2 - r^2) - \frac{ln\frac{r_e}{r}(r_e^2 - r_w^2)}{ln\frac{r_e}{r_w}}\right],\\ E_2 = P_e^2 - ln\frac{r_e}{r}(P_e^2 - P_w^2). \end{array}\right. }\quad \end{aligned}$$

The value of Eq. (32) is positive. Therefore, the solution of the fuzzy defined differential equation Eq. (11) is piecewise representation, and the solution is Eq. (12). Let us denote the function as follows:

$$\begin{aligned} f_2(h)= \sqrt{\frac{A_2^2}{k_0^2}+\frac{C_2 +D_2h}{k_0} +E_2}-\frac{A_2}{K_0}, \end{aligned}$$
(33)

then

$$\begin{aligned} g_2(x)= \sqrt{\frac{A_2^2}{k_0^2}+\frac{C_2 +D_2(a_2 + b_2. x)}{k_0} +E_2}-\frac{A_2}{K_0}, \end{aligned}$$

where \(g_2(x)\) is monotonous and bounded in \([-1,1]\), \(f_2(\widetilde{h}) = g_2(E)\). According to the local mapping theorem (see [23]), we obtain

$$\begin{aligned} s_2= g_2^{-1}(x)=-\frac{k_0[E_2-(x+\frac{A_2}{K_0})^2 + \frac{A_2^2}{k_0^2} + \frac{C_2+D_2a_2}{K_0}]}{D_2b_2}, \end{aligned}$$

we have

$$\begin{aligned}\mu _{f_2(\widetilde{h})}(x)=\mu _{g_2(E)}(x)= E(g_2^{-1}(x))\\&\quad ={\left\{ \begin{array}{ll} 1-\frac{k_0[E_2-(x+\frac{A_2}{K_0})^2 + \frac{A_2^2}{k_0^2} + \frac{C_2+D_2a_2}{K_0}]}{D_2b_2}\ &{} x\in [\alpha _1,\alpha _2],\\ 1+\frac{k_0[E_2-(x+\frac{A_2}{K_0})^2 + \frac{A_2^2}{k_0^2} + \frac{C_2+D_2a_2}{K_0}]}{D_2b_2}\ &{} x\in [\alpha _2,\alpha _3],\\ 0\ &{}\text{ other }. \end{array}\right. }\quad \end{aligned}$$

with

$$\begin{aligned} \alpha _1&=\sqrt{\frac{A_2^2}{k_0^2}+\frac{C_2 +D_2(a_2 - b_2 )}{k_0} +E_2}-\frac{A_2}{K_0},\\ \alpha _2&=\sqrt{\frac{A_2^2}{k_0^2}+\frac{C_2 +D_2a_2}{k_0} +E_2}-\frac{A_2}{K_0},\\ \alpha _3&= \sqrt{\frac{A_2^2}{k_0^2}+\frac{C_2 +D_2(a_2 + b_2 )}{k_0} +E_2}-\frac{A_2}{K_0}. \end{aligned}$$

Using the centroid method to defuzzify, we get Eq. (13).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Nguang, S.K., Shu, L. et al. Multiple Fuzzy Parameters Nonlinear Seepage model for Shale Gas Reservoirs. Int. J. Fuzzy Syst. 24, 2845–2857 (2022). https://doi.org/10.1007/s40815-022-01299-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01299-8

Keywords

Navigation