Skip to main content

Advertisement

Log in

A New Fault Estimation Observer Design for Nonlinear Markovian Jump Systems: An Interval Type-2 Fuzzy Method

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose a new fault estimation observer for nonlinear Markovian jump systems. Following the interval type-2 fuzzy logic rules, the original system can be approximated as an interval type-2 fuzzy Markovian jump system. For such a system, we develop a new intermediate fault estimation observer, in which a variable is introduced to estimate actuator faults. Significantly, a larger design freedom can be achieved by providing the observer gain matrix in the new form. To further evaluate the proposed method, multiple fault cases are considered. The proposed method proves effective in the simultaneous fault estimation for both actuator fault and sensor fault. Furthermore, two examples are simulated to numerically verify the feasibility of the given method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Peng, C., Wen, L.Y., Yang, J.Q.: On delay-dependent robust stability criteria for uncertain TS fuzzy systems with interval time-varying delay. Int. J. Fuzzy Syst. 13(1), 1 (2011)

    MathSciNet  Google Scholar 

  2. Liang, Q., Mendel, J.M.: Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive filters. IEEE Trans. Fuzzy Syst. 8(5), 551–563 (2000)

    Article  Google Scholar 

  3. Hagras, H.A.: A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans. Fuzzy Syst. 12(4), 524–539 (2004)

    Article  Google Scholar 

  4. Xie, W., Liu, B., Bu, L., et al.: A decoupling approach for observer-based controller design of TS fuzzy system with unknown premise variables. IEEE Trans. Fuzzy Syst. 29(9), 2714–2725 (2020)

    Article  Google Scholar 

  5. Nguyen, T.B., Kim, S.H.: Dissipative control of interval type-2 nonhomogeneous Markovian jump fuzzy systems with incomplete transition descriptions. Nonlinear Dyn. 1, 1–20 (2020)

    MATH  Google Scholar 

  6. Yang, J., Niu, Y., Zhang, Z.: Dynamic event-triggered sliding mode control for interval Type-2 fuzzy systems with fading channels. ISA Trans. 110, 53–62 (2021)

    Article  Google Scholar 

  7. Wang, N., He, H.: Dynamics-level finite-time fuzzy monocular visual servo of an unmanned surface vehicle. IEEE Trans. Ind. Electron. 67(11), 9648–9658 (2019)

    Article  MathSciNet  Google Scholar 

  8. Lu, Z., Ran, G., Xu, F., et al.: Novel mixed-triggered filter design for interval type-2 fuzzy nonlinear Markovian jump systems with randomly occurring packet dropouts. Nonlinear Dyn. 97(2), 1525–1540 (2019)

    Article  MATH  Google Scholar 

  9. Dong, H., Wang, Z., Gao, H.: Fault detection for Markovian jump systems with sensor saturations and randomly varying nonlinearities. IEEE Trans. Circuits Syst. I 59(10), 2354–2362 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, F., Shi, P., Lim, C.C., et al.: Fault detection filtering for nonhomogeneous Markovian jump systems via a fuzzy approach. IEEE Trans. Fuzzy Syst. 26(1), 131–141 (2016)

    Article  Google Scholar 

  11. Li, X., Zhang, W., Wang, Y.: Simultaneous fault estimation for Markovian jump systems with generally uncertain transition rates: a reduced-order observer approach. IEEE Trans. Ind. Electron. 67(9), 7889–7897 (2019)

    Article  Google Scholar 

  12. Li, X., Ahn, C.K., Lu, D., et al.: Robust simultaneous fault estimation and nonfragile output feedback fault-tolerant control for Markovian jump systems. IEEE Trans. Syst. Man Cybern. 49(9), 1769–1776 (2018)

    Article  Google Scholar 

  13. Li, X., Zhang, W., Wang, Y.: Simultaneous fault estimation for uncertain Markovian jump systems subjected to actuator degradation. Int. J. Robust Nonlinear Control 29(13), 4435–4453 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, L., Shi, P., Liu, M.: Fault reconstruction for Markovian jump systems with iterative adaptive observer. Automatica 105, 254–263 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liang, H., Zhang, L., Karimi, H.R., et al.: Fault estimation for a class of nonlinear semi-Markovian jump systems with partly unknown transition rates and output quantization. Int. J. Robust Nonlinear Control 28(18), 5962–5980 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang, H., Yin, S.: Descriptor observers design for Markov jump systems with simultaneous sensor and actuator faults. IEEE Trans. Autom. Control 64(8), 3370–3377 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, H., Yin, S.: Reduced-order sliding-mode-observer-based fault estimation for Markov jump systems. IEEE Trans. Autom. Control 64(11), 4733–4740 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yang, H., Luo, H., Kaynak, O., et al.: Adaptive SMO-based fault estimation for Markov jump systems with simultaneous additive and multiplicative actuator faults. IEEE Syst. J. (2020). https://doi.org/10.1109/JSYST.2020.2963909

    Article  Google Scholar 

  19. Shi, P., Liu, M., Zhang, L.: Fault-tolerant sliding-mode-observer synthesis of Markovian jump systems using quantized measurements. IEEE Trans. Ind. Electron. 62(9), 5910–5918 (2015)

    Article  Google Scholar 

  20. Li, X., Zhang, W.: Integrated finite-time fault estimation and fault-tolerant control for Markovian jump systems with generally uncertain transition rates. J. Franklin Inst. 357(16), 11298–11322 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, F., Lu, D., Li, X.: Robust observer based fault-tolerant control for one-sided Lipschitz Markovian jump systems with general uncertain transition rates. Int. J. Control Autom. Syst. 17(7), 1614–1625 (2019)

    Article  Google Scholar 

  22. Li, X., Zhang, W., Lu, D.: Zonotopic fault interval estimation for discrete-time Markovin jump systems with generally bounded transition probabilities. J. Franklin Inst. 358(3), 2138–2160 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lu, D., Zhang, X., Lan, Y., et al.: Fault detection and isolation for discrete-time Markovian jump systems with generally bounded transition probabilities: a zonotope-based method. Trans. Inst. Measur. Control 43(13), 2885–2887 (2021)

    Google Scholar 

  24. Wang, N., Ahn, C.K.: Coordinated Trajectory Tracking Control of a Marine Aerial-Surface Heterogeneous System. IEEE/ASME Trans. Mechatron. 26(6), 3198–3210 (2021)

    Article  Google Scholar 

  25. Kaviarasan, B., Kwon, O.M., Jin Park, M., et al.: Mode-dependent intermediate variable-based fault estimation for Markovian jump systems with multiple faults. Int. J. Rob. Nonlinear Control 31(8), 2960–2975 (2021)

    Article  MathSciNet  Google Scholar 

  26. Wang, N., He, H.: Extreme learning-based monocular visual servo of an unmanned surface vessel. IEEE Trans. Ind. Inf. 17(8), 5152–5163 (2020)

    Article  Google Scholar 

  27. Sun, C., Huang, S., Wu, L., et al.: Robust fast adaptive fault estimation for TS fuzzy Markovian jumping systems with mode-dependent time-varying state delays. Math. Problems Eng. (2021). https://doi.org/10.1155/2021/6646201

    Article  MathSciNet  Google Scholar 

  28. Yan, X.G., Edwards, C.: Nonlinear robust fault reconstruction and estimation using a sliding mode observer. Automatica 43(9), 1605–1614 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, H., Gao, H., Shi, P., et al.: Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach. Automatica 50(7), 1825–1834 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhu, J.W., Yang, G.H., Wang, H., et al.: Fault estimation for a class of nonlinear systems based on intermediate estimator. IEEE Trans. Autom. Control 61(9), 2518–2524 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, N., Su, S.F.: Finite-time unknown observer-based interactive trajectory tracking control of asymmetric underactuated surface vehicles. IEEE Trans. Control Syst. Technol. 29(2), 794–803 (2021)

    Article  Google Scholar 

  32. Zhang, K., Jiang, B., Cocquempot, V.: Adaptive observer-based fast fault estimation. Int. J. Control Autom. Syst. 6(3), 320–326 (2008)

    Google Scholar 

  33. Zhang, K., Jiang, B., Shi, P.: Fast fault estimation and accommodation for dynamical systems. IET Control Theory Appl. 3(2), 189–199 (2009)

    Article  MathSciNet  Google Scholar 

  34. Liu, M., Zhang, L., Shi, P., et al.: Fault estimation sliding-mode observer with digital communication constraints. IEEE Trans. Autom. Control 63(10), 3434–3441 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation under Grant Nos. 61803256, 61627810 and 61473183, and Shanghai Natural Science Foundation 21ZR1426100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohang Li.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Lu, D., Tong, Y. et al. A New Fault Estimation Observer Design for Nonlinear Markovian Jump Systems: An Interval Type-2 Fuzzy Method. Int. J. Fuzzy Syst. 25, 302–315 (2023). https://doi.org/10.1007/s40815-022-01318-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-022-01318-8

Keywords